Answer:
735 J/kg/C
Explanation:
Q = mcT
943 = (0.447)( c )(2.87)
1.28289c = 943
c = <u>7</u><u>3</u><u>5</u><u> </u><u>J</u><u>/</u><u>k</u><u>g</u><u>/</u><u>C</u><u> </u><u>(</u><u>3</u><u> </u><u>s</u><u>f</u><u>)</u>
Answer:
Sorry cant find the answer but i hope you got it right and if you didn't you'll still do great. :)
Explanation:
Answer:

Explanation:
Let assume that 100 kg of the compound is tested. The quantity of kilomoles for each element are, respectively:




Ratio of kilomoles oxygen to kilomole nitrogen is:


It means that exists 1.499 kilomole oxygen for each kilomole nitrogen.
The empirical formula for the compound is:

Most stars take millions of years to die. When a star like the Sun has burned all of its hydrogen fuel, it expands to become a red giant then when it fully runs out it then dies
To prevent the crate from slipping, the maximum force that the belt can exert on the crate must be equal to the static friction force.
Ff = 0.5 * 16 * 9.8 = 78.4 N
a = 4.9 m/s^2
If acceleration of the belt exceeds the value determined in the previous question, what is the acceleration of the crate?
In this situation, the kinetic friction force is causing the crate to decelerate. So the net force on the crate is 78.4 N minus the kinetic friction force.
Ff = 0.28 * 16 * 9.8 = 43.904 N
Net force = 78.4 – 43.904 = 34.496 N
To determine the acceleration, divide by the mass of the crate.
a = 34.496 ÷ 16 = 2.156 m/s^2