1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hodyreva [135]
3 years ago
7

A parallel-plate vacuum capacitor has 8.38 J of energy stored in it. The separation between the plates is 2.30 mm. If the separa

tion is decreased to 1.15 mm, what is the energy stored (a) if the capacitor is disconnected from the potential source so the charge on the plates remains constant, and (b) if the capacitor remains connected to the potential source so the potential difference between the plates remains constant
Physics
1 answer:
Elanso [62]3 years ago
8 0

Answer:

Explanation:

plate separation = 2.3 x 10⁻³ m

capacity C₁ = ε A / d

= ε A / 2.3 x 10⁻³

C₂ = ε A / 1.15 x 10⁻³

\frac{C_2}{C_1} = \frac{2.3}{1.15}

a ) when charge remains constant

energy = \frac{q^2}{2C}

q is charge and C is capacity

energy stored initially E₁= \frac{q^2}{2C_1}

energy stored finally E₂ = \frac{q^2}{2C_2}

\frac{E_1}{E_2} = \frac{C_2}{C_1} = \frac{2.3}{1.15}

E_2 = \frac{1.15}{2.3 } \times E_1

= \frac{1.15}{2.3 } \times 8.38

= 4.19 J

b )

In this case potential diff remains constant

energy of capacitor = 1/2 C V²

energy is proportional to capacity as V is constant .

\frac{E_2}{E_1} = \frac{C_2}{C_1}

\frac{E_2}{8.38} = \frac{2.3}{1.15}

E_2 = 16.76 .

You might be interested in
Why can gases be compressed
Keith_Richards [23]
Gases can be compressed, because they just take up the space surrounding them. The attractive forces between the particles in a gas are very weak, so the particles are free to move in random direction. They just move along until they collide, either with the walls of the container or with each other. Moreover, gases can be compressed because the particles are far apart and they have space to move into.

5 0
3 years ago
A 0.500-kg stone is moving in a vertical circular path attached to a string that is 75.0 cm long. The stone is moving around the
Semenov [28]

Answer:

B. 7.07 m/s

Explanation:

The velocity of the stone when it leaves the circular path is its tangential velocity, v, which is given by

v=\omega r

where \omega is the angular speed and r is the radius of the circular path.

\omega is given by

\omega = 2\pi f

where f is the frequency of revolution.

Thus

v=2\pi fr

Using values from the question,

v=2\pi\times 1.50\times0.75

<em>Note the conversion of 75 cm to 0.75 m</em>

v=2\times3.14\times 1.50\times0.75 = 9.42\times0.75 = 7.065=7.07

6 0
3 years ago
One of the longer sides of a kite is 39 feet. one of the shorter sides is 25 feet. half the length of the shorter diagonal is 15
pychu [463]
The area of a triangle is found by multiplying the height of the triangle by the length of the base and dividing them both by 2. The length of the shorter side in the equation is useless information, so just multiply 39 by 25 and divide that by 2. A=487.5 sq ft. Also, that's a pretty big kite. 
8 0
2 years ago
Many biological systems are well-described by the laws of statistical physics. A simple yet often powerful approach is to think
GuDViN [60]

Answer:

z1/z2

Explanation:

we have no quantum effects therefore we can make use of Maxwell Boltzmann distribution in the description of this system.

using the boltzman distribution the probability of finding a particle in energy state

P_{ei}  = \frac{gie^{-ei/kol} }{z}

we have

gi to be degeneration of the ith state

ei to be energy of ith state

z=e^{-ei/kbt} summation

P_{ope} = \frac{e^{-ei/kBt} }{z} = \frac{Z_{1} }{Z}

We have R to be equal to

\frac{P_{ope} }{P_{Close} } = \frac{Z1}{Z2}

8 0
2 years ago
Until a train is a safe distance from the station, it must travel at 5 m/s. Once the train is on open track, it can speec
nadezda [96]

Answer:

The acceleration of the train is 5 m/s².

Explanation:

Given:

let the initial velocity of a train = 5 m/s and

final velocity of a train = 45 m/s

time taken = 8 s

To find:

acceleration: ?

Solution:

We define acceleration as change in velocity per unit time that is the difference between the final velocity and initial velocity divided by time.

Acceleration = \frac{\textrm{final velocity} - \textrm{initial velocity}}{time} \\

On substituting the above values we get the required acceleration

Acceleration = \frac{45 - 5}{8}\\ =\frac{40}{8}\\ =5\ m/s^{2}

Therefore,the acceleration of the train is 5 m/s².

4 0
3 years ago
Other questions:
  • A car weighing 11.1 kN and traveling at 13.4 m/s without negative lift attempts to round an unbanked curve with a radius of 61.0
    13·1 answer
  • In the desert enviroment the chemical weathering of rocks is generally reduced because
    12·1 answer
  • Identify as many energy sources as you can which are used to power light sources
    7·2 answers
  • Which process best describes part of a scientific investigation?
    6·2 answers
  • How do I find the speed of sound when given Frequency and displacement?
    14·1 answer
  • What name is given to the variable we plot on the x-axsis
    6·1 answer
  • A baseball pitcher loosens up his pitching arm. He tosses a 0.20-kg ball using only the rotation of his forearm, 0.28 m in lengt
    5·1 answer
  • Help me on this question
    14·1 answer
  • Convert the decimal number 61078 to binary by using sum-of-weights method​
    15·1 answer
  • A 432 g sample of 60/27Co has a decay constant of 4.14 x 10-9 s-1. How long will it take before only 1/3 of the original sample
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!