The electric potential between the two charges is 91.68 V.
<h3>
Electric potential between the two charges</h3>
The electric potential between the two charges is calculated as follows;
V = Ed
where;
- V is electric potential
- E is electric field
- d is the distance of the charge
Substitute the given parameters and solve for electric potential,
V = 573 N/c x 0.16 m
V = 91.68 V
Thus, the electric potential between the two charges is 91.68 V.
Learn more about electric potential here: brainly.com/question/26978411
#SPJ4
Answer:
The correct option is D
Explanation:
From the question we are told that
The intensity of the first electromagnetic wave is
The amplitude of the electric field is 
The intensity of the second electromagnetic wave is 
Generally the an electromagnetic wave intensity is mathematically represented as

Looking at this equation we see that

=> ![\frac{I_1}{I_2} = [ \frac{ E_{max}_1}{ E_{max}_2} ] ^2](https://tex.z-dn.net/?f=%5Cfrac%7BI_1%7D%7BI_2%7D%20%20%3D%20%20%5B%20%5Cfrac%7B%20E_%7Bmax%7D_1%7D%7B%20E_%7Bmax%7D_2%7D%20%5D%20%5E2)
=> 
=>
=>
Answer:
Difference in Twin's Ages = 12.68 years
Explanation:
Using special theory of relativity's time dilation phenomenon, we first find the time that is passed on earth during Lou's trip.
t = t₀/[√(1 - v²/c²)]
where,
t = time measured by the person in relative motion = 1 year
t₀ = time measured by the person at rest = ?
v = speed of relative motion = 0.96 c
c = speed of light
Therefore,
1 year = t₀/[√(1 - 0.96² c²/c²)]
1 year = t₀/[√(1 - 0.9216)]
(1 year)(0.28 year) = t₀
t₀ = 0.28 year
Let,
y = Sue's age
x = Lou's age
so,
x - y = 13.4 years
but, after this trip Lou has aged 1 year, and on earth only 0.28 years passed so, Sue has aged only 0.28 years. Therefore,
x = x + 1
y = y + 0.28
Therefore,
(x + 1 year) - (y + 0.28 year) = 13.4 years
x - y = 13.4 years - 0.72 year
x - y = 12.68 years
<u>Difference in Twin's Ages = 12.68 years</u>
Answer: Longitudinal waves
Explanation: For a sound wave traveling through air, the vibrations of the particles are best described as longitudinal. Longitudinal waves are waves in which the motion of the individual particles of the medium is in a direction that is parallel to the direction of energy transport
Pretty fast. Everything looks fast when running past a light pole