Answer:
doppler shift's formula for source and receiver moving away from each other:
<em>λ'=λ°√(1+β/1-β)</em>
Explanation:
acceleration of spaceship=α=29.4m/s²
wavelength of sodium lamp=λ°=589nm
as the spaceship is moving away from earth so wavelength of earth should increase w.r.t increasing speed until it vanishes at λ'=700nm
using doppler shift's formula:
<em>λ'=λ°√(1+β/1-β)</em>
putting the values:
700nm=589nm√(1+β/1-β)
after simplifying:
<em>β=0.17</em>
by this we can say that speed at that time is: v=0.17c
to calculate velocity at an acceleration of a=29.4m/s²
we suppose that spaceship started from rest so,
<em>v=v₀+at</em>
where v₀=0
so<em> v=at</em>
as we want to calculate t so:-
<em>t=v/a</em> v=0.17c ,c=3x10⁸ ,a=29.4m/s²
putting values:
=0.17(3x10⁸m/s)/29.4m/s²
<em>t=1.73x10⁶</em>
Answer:
Bill's motor power: W_B = F x S / T = F x 0.35 / 2= 0.175F
Nageen's motor power: W_N = F x S / T = F x 0.35 / 1.8 = 0.194F
=> 0.194F > 0.175F => Nageen's motor applied more power to the box than Bill's motor.
Answer:
2653 turns
Explanation:
We are given that
Diameter,d=2 cm
Length of magnet,l=8 cm=
1m=100 cm
Magnetic field,B=0.1 T
Current,I=2.4 A
We are given that
Magnetic field of solenoid and magnetic are same and size of both solenoid and magnetic are also same.
Length of solenoid=
Magnetic field of solenoid

Using the formula

Where 

Answer:
0.266 m
Explanation:
Assuming the lump of patty is 3 Kg then applying the principal of conservation of linear momentum,
P= mv where p is momentum, m is mass and v is the speed of an object. In this case
where sunscripts p and b represent putty and block respectively, c is common velocity.
Substituting the given values then
3*8=v(15+3)
V=24/18=1.33 m/s
The resultant kinetic energy is transferred to spring hence we apply the law of conservation of energy
where k is spring constant and x is the compression of spring. Substituting the given values then

Explanation:
1. Height Relatives to reference point, Mass, and strength of the gravitational field it's in
2. Distance in the magnetic field