Answer:
By looking at the amount of time between the P and S wave on a seismographs recorded on a seismograph, scientists can tell how far away the earthquake was from that location. However, they can't tell in what direction from the seismograph the earthquake was, only how far away it was.
Explanation:
Explanation:
To show - from E=mc²=hv show that wavelength=h/mv
Proof -
Given that,
E = mc²
E = hν
By equating both the equations, we get
mc² = hν
Because real particles do not travel at the speed of light, De Broglie submitted velocity ( v ) for the speed of light ( c ).
mv² = hν
Through the equation λ , de Broglie substituted v/λ for ν and arrived at the final expression that relates wavelength and particle with speed.
mv² = hv/λ
⇒λ = hv/mv²
⇒λ = h/mv
Hence showed.
The answer is ammonium iron
Because society has shaped our mind on what we shall think about things
Answer:
The correct answer is 160.37 KJ/mol.
Explanation:
To find the activation energy in the given case, there is a need to use the Arrhenius equation, which is,
k = Ae^-Ea/RT
k1 = Ae^-Ea/RT1 and k2 = Ae^-Ea/RT2
k2/k1 = e^-Ea/R (1/T2-1/T1)
ln(k2/k1) = Ea/R (1/T1-1/T2)
The values of rate constant k1 and k2 are 3.61 * 10^-15 s^-1 and 8.66 * 10^-7 s^-1.
The temperatures T1 and T2 are 298 K and 425 K respectively.
Now by filling the values we get:
ln (8.66*10^-7/3.61*10^-15) = Ea/R (1/298-1/425)
19.29 = Ea/R * 0.001
Ea = 160.37 KJ/mol