The most common metals used for permanent magnets are iron, nickel, cobalt and some alloys of rare earth metals
The answer to this question is False
Answer:
The resultant force on charge 3 is Fr= -2,11665 * 10^(-7)
Explanation:
Step 1: First place the three charges along a horizontal axis. The first positive charge will be at point x=0, the second negative charge at point x=10 and the third positive charge at point x=20. Everything is indicated in the attached graph.
Step 2: I must calculate the magnitude of the forces acting on the third charge.
F13: Force exerted by charge 1 on charge 3.
F23: Force exerted by charge 2 on charge 3.
K: Constant of Coulomb's law.
d13: distance from charge 1 to charge 3.
d23: distance from charge 2 to charge 3
Fr: Resulting force.
q1=+2.06 x 10-9 C
q2= -3.27 x 10-9 C
q3= +1.05 x 10-9 C
K=9-10^9 N-m^2/C^2
d13= 0,20 m
d23= 0,10 m
F13= K * (q1 * q3)/(d13)^2
F13=9,7335*10^(-8) N
F23=K * (q2 * q3)/(d23)^2
F23= -3,09 * 10^(-7)
Step 3: We calculate the resultant force on charge 3.
Fr=F13+F23= -2,11665 * 10^(-7)
They all stay the same regardless
Answer:
(A) 10132.5Pa
(B)531kJ of energy
Explanation:
This is an isothermal process. Assuming ideal gas behaviour then the relation P1V1 = P2V2 holds.
Given
m = 10kg = 10000g, V1 = 0.1m³, V2 = 1.0m³
P1 = 101325Pa. M = 102.03g/mol
P2 = P1 × V1 /V2 = 101325 × 0.1 / 1 = 10132.5Pa
(B) Energy is transfered by the r134a in the form of thw work done in in expansion
W = nRTIn(V2/V1)
n = m / M = 10000/102.03 = 98.01mols
W = 98.01 × 8.314 × 283 ×ln(1.0/0.1)
= 531kJ.