1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harman [31]
3 years ago
8

A runner taking part in the 200 m dash must run around the end of a track that has a circular arc with a radius of curvature of

40 m. If he completes the 200 m dash in 24.0 s and runs at constant speed throughout the race, what is the magnitude of his centripetal acceleration (in m/s2) as he runs the curved portion of the track?
Physics
1 answer:
34kurt3 years ago
5 0

Answer:

The centripetal acceleration of the runner is 1.73\ m/s^2.

Explanation:

Given that,

A runner completes the 200 m dash in 24.0 s and runs at constant speed throughout the race. We need to find the centripetal acceleration as he runs the curved portion of the track. We know that the centripetal acceleration is given by :

a=\dfrac{v^2}{r}

v is the velocity of runner

v=\dfrac{200\ m}{24\ s}\\\\v=8.34\ m/s

Centripetal acceleration,

a=\dfrac{(8.34)^2}{40}\\\\a=1.73\ m/s^2

So, the centripetal acceleration of the runner is 1.73\ m/s^2. Hence, this is the required solution.

You might be interested in
Suppose you observed the equation for a traveling wave to be y(x, t) = A cos(kx − ????t), where its amplitude of oscillations wa
OLga [1]

Answer:

<h2>15m/s</h2>

Explanation:

The equation for a traveling wave as expressed as y(x, t) = A cos(kx − \omegat) where An is the amplitude f oscillation, \omega is the angular velocity and x is the horizontal displacement and y is the vertical displacement.

From the formula; k =\frac{2\pi x}{\lambda} \ and \ \omega = 2 \pi f where;

\lambda \ is\ the \ wavelength \ and\ f \ is\ the\ frequency

Before we can get the transverse speed, we need to get the frequency and the wavelength.

frequency = 1/period

Given period = 2/15 s

Frequency = \frac{1}{(2/15)}

frequency = 1 * 15/2

frequency f = 15/2 Hertz

Given wavelength \lambda = 2m

Transverse speed v = f \lambda

v = 15/2 * 2\\\\v = 30/2\\\\v = 15m/s

Hence, the transverse speed at that point is  15m/s

8 0
3 years ago
What are some possible materials you could use to make your battery? DON’T FORGET TO include information about why it is importa
Dima020 [189]

Explanation:

Commercially available batteries use a variety of metals and electrolytes. Anodes can be made of zinc, aluminum, lithium, cadmium, iron, metallic lead, lanthanide, or graphite. Cathodes can be made of manganese dioxide, mercuric oxide, nickel oxyhydroxide, lead dioxide or lithium oxide. Potassium hydroxide is the electrolyte used in most battery types, but some batteries use ammonium or zinc chloride, thionyl chloride, sulfuric acid or lithiated metal oxides. The exact combination varies by battery type. For example, common single-use alkaline batteries use a zinc anode, a manganese dioxide cathode, and potassium hydroxide as the electrolyt

4 0
3 years ago
You have been hired as a technical consultant for an early-morning cartoon series for children to make sure that the science is
katen-ka-za [31]

The initial potential energy of the wagon containing gold boxes will enable

it roll down the hill when cut loose.

The Lone Ranger and Tonto have approximately <u>5.1 seconds</u>.

Reasons:

Mass wagon and gold = 166 kg

Location of the wagon = 77 meters up the hill

Slope of the hill = 8°

Location of the rangers = 41 meters from the canyon

Mass of Lone Ranger, m₁ = 65 kg

Mass of Tonto m₂ = 66 kg

Solution;

Height of the wagon above the level ground, h = 77 m × sin(8°) ≈ 10.72 m

Potential energy = m·g·h

Where;

g = Acceleration due to gravity ≈ 9.81 m/s²

Potential energy of wagon, P.E. ≈ 166 × 9.81 × 10.72 = 17457.0912

Potential energy of wagon, P.E. ≈ 17457.0912 J

By energy conservation, P.E. = K.E.

K.E. = \mathbf{\dfrac{1}{2} \cdot m \cdot v^2}

Where;

v = The velocity of the wagon a the bottom of the cliff

Therefore;

\dfrac{1}{2} \times 166 \times v^2 = 17457.0912

v = \sqrt{\dfrac{17457.0912}{\dfrac{1}{2} \times 166} } \approx 14.5

Velocity of the wagon, v ≈ 14.5 m/s

Momentum = Mass, m × Velocity, v

Initial momentum of wagon = m·v

Final momentum of wagon and ranger = (m + m₁ + m₂)·v'

By conservation of momentum, we have;

m·v = (m + m₁ + m₂)·v'

\therefore v' = \mathbf{ \dfrac{m \cdot v}{(m + m_1 + m_2)  }}

Which gives;

\therefore v' = \dfrac{166 \times 14.5}{(166 + 65 + 66)  } \approx 8.1

The velocity of the wagon after the Ranger and Tonto drop in, v' ≈ 8.1 m/s

Time = \dfrac{Distance}{Velocity}

\mathrm{The \ time \ the\ Lone \  Ranger \  and  \ Tonto \  have,  \ t} = \dfrac{41 \, m}{8.1 \, m/s} \approx 5.1 \, s

The Lone Range and Tonto have approximately <u>5.1 seconds</u> to grab the

gold and jump out of the wagon before the wagon heads over the cliff.

Learn more here:

brainly.com/question/11888124

brainly.com/question/16492221

5 0
3 years ago
A skier moving at 4.75 m/s encounters a long, rough, horizontal patch of snow having a coefficient of kinetic friction of 0.220
disa [49]
First we need to find the acceleration of the skier on the rough patch of snow.
We are only concerned with the horizontal direction, since the skier is moving in this direction, so we can neglect forces that do not act in this direction. So we have only one horizontal force acting on the skier: the frictional force, \mu m g. For Newton's second law, the resultant of the forces acting on the skier must be equal to ma (mass per acceleration), so we can write:
ma=-\mu m g
Where the negative sign is due to the fact the friction is directed against the motion of the skier.
Simplifying and solving, we find the value of the acceleration:
a=-(0.220)(9.81 m/s^2)=-2.16 m/s^2

Now we can use the following relationship to find the distance covered by the skier before stopping, S:
2aS=v_f^2-v_i^2
where v_f=0 is the final speed of the skier and v_i=4.75 m/s is the initial speed. Substituting numbers, we find:
S=- \frac{v_i^2}{2a}=- \frac{(4.75 m/s)^2}{2(-2.16 m/s^2)}=5.23 m
5 0
3 years ago
Scienctists agree that the world's climate is getting hotter. What do you think might happen as a result of this climate change?
Mama L [17]

Answer:

Bad things

Explanation:

Global warming has many terrible effects on people and the earth itself

such as, death, birth defects, asthmea, breathing conditions, increased diseases.

4 0
3 years ago
Other questions:
  • Why is iron significant to understanding how a supernova occurs?
    7·1 answer
  • Precipitation is most likely occurring at A because it is located
    13·1 answer
  • Susan drops her camera in the river from a bridge that 250 feet high. How long does it take the camera to fall 250 feet
    10·2 answers
  • What is the unit of measurement used for atomic particles?
    10·2 answers
  • What do scientist need to look at before developing
    15·1 answer
  • After the box comes to rest at position x1, a person starts pushing the box, giving it a speed v1. When the box reaches position
    5·1 answer
  • Addition of a metal slab of thickness "a" between the plates of a parallel plate capacitor of plate separation "d" is equivalent
    12·1 answer
  • If you were trying to build a soundproof room, which of the following materials would you choose in order to absorb the most sou
    6·2 answers
  • Radio waves travel 300,000,000 m/s. The frequency is 101,700,000. ehats the wavelength​
    15·1 answer
  • Does a closed system obey the law of conservation of matter? Write one or two sentences explaining your answer
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!