Answer: 2000 watts
Explanation:
Given that,
power = ?
Weight of object = 200-N
height = 4 m
Time = 4 s
Power is the rate of work done per unit time i.e Power is simply obtained by dividing work by time. Its unit is watts.
i.e Power = work / time
(since work = force x distance, and weight is the force acting on the object due to gravity)
Then, Power = (weight x distance) / time
Power = (200N x 4m) / 4s
Power = 8000Nm / 4s
Power = 2000 watts
Thus, 2000 watts of power is needed to lift the object.
Answer:
60N
Explanation:
in this case the minimum amount of force required must be equal to the friction Force. i.e <u>Newton</u><u>'s</u><u> </u><u>first</u><u> </u><u>law</u><u> of</u><u> </u><u>mot</u><u>ion</u><u>.</u>
therefore the maximum amount of frictional force is equal to the applied force which is 60N.
because of the net force acting on the object is zero the object is in constant motion . i.e equal and opposite force must be applied so that the object is in constant velocity therefore the total frictional force must be 60N
Answer:
7.2g
Explanation:
From the expression of latent heat of steam, we have
Heat supplied by steam = Heat gain water + Heat gain by calorimeter
mathematically,
+
=
+
L=specific latent heat of water(steam)=2268J/g
=specific heat capacity=4.2J/gK
=specific heat capacity of calorimeter =0.9J/gk
=280g
=38g
α=change in temperature
=(40-25)=15
=(40-25)=15
=(100-40)=60
Note: the temperature of the calorimeter is the temperature of it content.
From the equation, we can make
the subject of formula

Hence

Hence the amount of steam needed is 7.2g
According to the conservation of mechanical energy, the kinetic energy just before the ball strikes the ground is equal to the potential energy just before it fell.
Therefore, we can say KE = PE
We know that PE = m·g·h
Which means KE = m·g·h
We can solve for h:
h = KE / m·g
= 20 / (0.15 · 9.8)
= 13.6m
The correct answer is: the ball has fallen from a height of 13.6m.
Explanation:
<h3>1.) Regeneration is the natural process of replacing or restoring damaged or missing cells, tissues, organs, and even entire body parts to full function in plants and animals.</h3>
2.) When noise is added to analogue signals, it usually sounds like background hiss. Such noise can not be removed so the original clean signal can not be re-created or re-generated.