Answer:
d. Copper (II) sulfate
Explanation:
Given data:
Mass of Al = 1.25 g
Mass of CuSO₄ = 3.28 g
What is limiting reactant = ?
Solution:
Chemical equation:
2Al + 3CuSO₄ → Al₂ (SO₄)₃ + 3Cu
Number of moles of Al:
Number of moles = mass/molar mass
Number of moles = 1.25 g/ 27 g/mol
Number of moles = 0.05 mol
Number of moles of CuSO₄:
Number of moles = mass/molar mass
Number of moles = 3.28 g/ 159.6 g/mol
Number of moles = 0.02 mol
now we will compare the moles of reactant with product.
Al : Al₂ (SO₄)₃
2 : 1
0.05 : 1/2×0.05=0.025 mol
Al : Cu
2 : 3
0.05 : 3/2×0.05 = 0.075 mol
CuSO₄ : Al₂ (SO₄)₃
3 : 1
0.02 : 1/3×0.02=0.007 mol
CuSO₄ : Cu
3 : 3
0.02 : 0.02
Less number of moles of reactants are produced by CuSO₄ thus it will act as limiting reactant.
Answer:
The frequency of wave is 0.125 Hz.
Explanation:
Frequency:
"It is an event repeat itself in a given period of time"
The unit of frequency is the Hz . If time is measured in seconds then frequency will be in Hz. Hz is equal to the per second.
Formula:
f = 1/ T
f = 1/ 8 sec
f = 0.125 Hz
Answer: Moles of hydrogen required are 4.57 moles to make 146.6 grams of methane, .
Explanation:
Given: Mass of methane = 146.6 g
As moles is the mass of a substance divided by its molar mass. So, moles of methane (molar mass = 16.04 g/mol) are calculated as follows.
The given reaction equation is as follows.
This shows that 2 moles of hydrogen gives 1 mole of methane. Hence, moles of hydrogen required to form 9.14 moles of methane is as follows.
Thus, we can conclude that moles of hydrogen required are 4.57 moles to make 146.6 grams of methane, .
I think the answer is number D…. I think
Answer: yes even temperature too in rarely case