Step 1: Look in your book or online for the conical pendulum equation.
Step 2: Look at the drawing and see which angle is involved in the equation.
Answer: It's Angle #2 in your drawing.
Answer:
(A) L = 115.3kgm²/s
(B) dL/dt = 94.1kgm²/s²
Explanation:
The magnitude of the angular momentum of the rock is given by the foemula
L = mvrSinθ
We have been given θ = 36.9°, m = 2.0kg, v = 12.0m/s and r = 8.0m.
Therefore L = 2.00 × 12 × 8.0 × Sin 36.9° =
115.3 kgm²/s
(B) The magnitude of the rate of angular change in momentum is given by
dL /dt = d(mvrSinθ)/dt = mgrSinθ = 2.00 × 9.8 × 8.0× Sin36.9 = 94.1kgm²/s²
Answer:
Heat capacity, Q = 781.74 Joules
Explanation:
Given the following data;
Mass = 12g
Initial temperature = 28.3°C
Final temperature = 43.87°C
Specific heat capacity of water = 4.184J/g°C
To find the quantity of heat needed?
Heat capacity is given by the formula;
Where;
Q represents the heat capacity or quantity of heat.
m represents the mass of an object.
c represents the specific heat capacity of water.
dt represents the change in temperature.
dt = T2 - T1
dt = 43.87 - 28.3
dt = 15.57°C
Substituting into the equation, we have;
Q = 781.74 Joules
If the two waves have the SAME FREQUENCY and are exactly
out of phase (180° apart), then the resultant wave will have the
same frequency and an amplitude of 1 unit.
If the two waves do not have the SAME FREQUENCY, then their
relative phase is meaningless.
Magnetic domain
Its speed can be slowed because the magnetic field can be turned on and off, can have its direction reversed and can have its strength changed. However, The speed of a magnetic field that is produced by a current is impossible to be slowed.