Acceleration = force/mass
1/4
s=ut+1/2at^2
0*4+1/2*1/4*4^2
1/2*1/4*16
1/2*4
=2
Answer:
192.08J
19.6m/s
Explanation:
Since there will be no potential energy when the ball is on the ground, the change in potential energy is equal to the potential energy at the start when the ball is 19.6m above the ground.
PE=mgh
=(1)(9.8)(19.6)
=192.08J
v²=u²+2as, where v is the final velocity, u is initial velocity, a is acceleration and s is distance. Initial velocity is 0 since it starts at rest.
v²=u²+2as
v²=0²+2(9.8)(19.6)
v=√384.16
=19.6m/s
Answer:
The correct answer is "6666.67 N".
Explanation:
The given values are:
Mass,
m = 0.100
Relative speed,
v = 4.00 x 10³
time,
t = 6.00 x 10⁻⁸
As we know,
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
<span>...a concordant intrusion.
In geology, "concordant" means the same as "sill" -- or, an intrusion that has gotten in between older layers of rock (or even beds of volcanic lava). An intrusion with boundaries parallel to layering in surrounding rocks suggests this, meaning it is considered to be a concordant intrusion.</span>
Answer:
7.5 cm
Explanation:
In the figure we can see a sketch of the problem. We know that at the bottom of the U-shaped tube the pressure is equal in both branches. Defining
Ethyl alcohol density and
Glycerin density , we can write:

Simplifying:

On the other hand:

Rearranging:

Replacing (2) in (1):

Rearranging:

Data:


