1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tju [1.3M]
3 years ago
12

You are walking in Paris alongside the Eiffel Tower and suddenly a croissant falls on your head and knocks you to the ground. If

you neglect air resistance, calculate how many seconds the croissant dropped before it knocked you over if the velocity is 76.4 m/s.
Physics
2 answers:
Alexxandr [17]3 years ago
6 0

Answer:

7,79 seconds

Explanation:

{\displaystyle {\overline {a}}={\frac {\Delta v}{t}}}

You need to use the acceleration formula. A is acceliration, \displaystyle \Delta \mathbf {v} is change in velocity and t is time.

You  need to multiply the formula with t and divide by a and you get

a*t=\displaystyle \Delta \mathbf {v}

t= \displaystyle \Delta \mathbf {v}/a

after that you just need to insert the numbers

change in velocity is 76.4 minus 0.

acceliration is gravitational acceleration which is 9.81.

After that you get

t=76.4/9.81

t= 7,787971458 s

egoroff_w [7]3 years ago
6 0

Answer:

seconds of freefall and calculate the velocity at impact in mi/hr. I VE = 10.78 m/s ... You are walking in Paris alongside the Eiffel Tower and suddenly a croissant smacks you on the head and knocks you to the ground. From your handy ... If you neglect air resistance, calculate how many seconds the croissant dropped before it.

Explanation:

You might be interested in
How much time does it take for an eagle flying at a speed of 50 kilometers per hour to travel a distance of 2000 kilometers?
gtnhenbr [62]

Answer:40 hour

Explanation:

8 0
3 years ago
How many water (in kg) can raise its temperature from 23°C to 100°C by adding 21500 Joules of energy?
igomit [66]

Answer: Approximately 8.0g of water

Explanation:

4 0
2 years ago
A catapult launches a test rocket vertically upward from a well, giving the rocket an initial speed of 80.6 m/s at ground level.
kow [346]

Before the engines fail, the rocket's altitude at time <em>t</em> is given by

y_1(t)=\left(80.6\dfrac{\rm m}{\rm s}\right)t+\dfrac12\left(3.90\dfrac{\rm m}{\mathrm s^2}\right)t^2

and its velocity is

v_1(t)=80.6\dfrac{\rm m}{\rm s}+\left(3.90\dfrac{\rm m}{\mathrm s^2}\right)t

The rocket then reaches an altitude of 1150 m at time <em>t</em> such that

1150\,\mathrm m=\left(80.6\dfrac{\rm m}{\rm s}\right)t+\dfrac12\left(3.90\dfrac{\rm m}{\mathrm s^2}\right)t^2

Solve for <em>t</em> to find this time to be

t=11.2\,\mathrm s

At this time, the rocket attains a velocity of

v_1(11.2\,\mathrm s)=124\dfrac{\rm m}{\rm s}

When it's in freefall, the rocket's altitude is given by

y_2(t)=1150\,\mathrm m+\left(124\dfrac{\rm m}{\rm s}\right)t-\dfrac g2t^2

where g=9.80\frac{\rm m}{\mathrm s^2} is the acceleration due to gravity, and its velocity is

v_2(t)=124\dfrac{\rm m}{\rm s}-gt

(a) After the first 11.2 s of flight, the rocket is in the air for as long as it takes for y_2(t) to reach 0:

1150\,\mathrm m+\left(124\dfrac{\rm m}{\rm s}\right)t-\dfrac g2t^2=0\implies t=32.6\,\mathrm s

So the rocket is in motion for a total of 11.2 s + 32.6 s = 43.4 s.

(b) Recall that

{v_f}^2-{v_i}^2=2a\Delta y

where v_f and v_i denote final and initial velocities, respecitively, a denotes acceleration, and \Delta y the difference in altitudes over some time interval. At its maximum height, the rocket has zero velocity. After the engines fail, the rocket will keep moving upward for a little while before it starts to fall to the ground, which means y_2 will contain the information we need to find the maximum height.

-\left(124\dfrac{\rm m}{\rm s}\right)^2=-2g(y_{\rm max}-1150\,\mathrm m)

Solve for y_{\rm max} and we find that the rocket reaches a maximum altitude of about 1930 m.

(c) In part (a), we found the time it takes for the rocket to hit the ground (relative to y_2(t)) to be about 32.6 s. Plug this into v_2(t) to find the velocity before it crashes:

v_2(32.6\,\mathrm s)=-196\frac{\rm m}{\rm s}

That is, the rocket has a velocity of 196 m/s in the downward direction as it hits the ground.

3 0
3 years ago
A 4000 kg satellite is placed 2.60 x 10^6 m above the surface of the Earth.
mash [69]

a) The acceleration of gravity is 4.96 m/s^2

b) The critical velocity is 6668 m/s (24,006 km/h)

c) The period of the orbit is 8452 s

d) The satellite completes 10.2 orbits per day

e) The escape velocity of the satellite is 9430 m/s

f) The escape velocity of the rocket is 11,191 m/s

Explanation:

a)

The acceleration of gravity for an object near a planet is given by

g=\frac{GM}{(R+h)^2}

where

G is the gravitational constant

M is the mass of the planet

R is the radius of the planet

h is the height above the surface

In this problem,

M=5.98\cdot 10^{24} kg (mass of the Earth)

R=6.37\cdot 10^6 m (Earth's radius)

h=2.60\cdot 10^6 m (altitude of the satellite)

Substituting,

g=\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6 + 2.60\cdot 10^6)^2}=4.96 m/s^2

b)

The critical velocity for a satellite orbiting around a planet is given by

v=\sqrt{\frac{GM}{R+h}}

where we have again:

M=5.98\cdot 10^{24} kg (mass of the Earth)

R=6.37\cdot 10^6 m (Earth's radius)

h=2.60\cdot 10^6 m (altitude of the satellite)

Substituting,

v=\sqrt{\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6 + 2.60\cdot 10^6)}}=6668 m/s

Converting into km/h,

v=6668 m/s \cdot \frac{3600 s/h}{1000 m/km}=24,006 km/h

c)

The period of the orbit is given by the circumference of the orbit divided by the velocity:

T=\frac{2\pi (R+h)}{v}

where

R=6.37\cdot 10^6 m

h=2.60\cdot 10^6 m

v = 6668 m/s

Substituting,

T=\frac{2\pi (6.37\cdot 10^6 + 2.60\cdot 10^6)}{6668}=8452 s

d)

One day consists of:

t = 24 \frac{hours}{day} \cdot 60 \frac{min}{hours} \cdot 60 \frac{s}{min}=86400 s

While the period of the orbit is

T = 8452 s

So, the number of orbits completed by the satellite in one day is

n=\frac{t}{T}=\frac{86400}{8452}=10.2

e)

The escape velocity for an object in the gravitational field of a planet is given by

v=\sqrt{\frac{2GM}{R+h}}

where here we have:

M=5.98\cdot 10^{24} kg

R=6.37\cdot 10^6 m

h=2.60\cdot 10^6 m

Substituting, we find

v=\sqrt{\frac{2(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6 + 2.60\cdot 10^6)}}=9430 m/s

f)

We can apply again the formula to find the escape velocity for the rocket:

v=\sqrt{\frac{2GM}{R+h}}

Where this time we have:

M=5.98\cdot 10^{24} kg

R=6.37\cdot 10^6 m

h=0, because the rocket is located at the Earth's surface, so its altitude is zero.

And substituting,

v=\sqrt{\frac{2(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6)}}=11,191 m/s

Learn more about gravitational force:

brainly.com/question/1724648

brainly.com/question/12785992

#LearnwithBrainly

6 0
3 years ago
How are types of energy in the electromagnetic spectrum defined?
Drupady [299]
It is defined by their wavelength. Different colors have different wavelengths. For example, radio waves have a really long wavelength, whereas gamma-rays have a very short wavelength.
6 0
2 years ago
Read 2 more answers
Other questions:
  • The light of a star that can be seen from Earth is called what? (Apparent or Absolute Magnitude)
    13·1 answer
  • Why is it important that all scientists use the metric system?.
    6·1 answer
  • Andre the Giant and Thumbelina are standing in the middle of an ice-skating rink facing each other. Andre the Giant pushes Thumb
    6·2 answers
  • Did you think about this over Christmas? I did (-: Before Christmas a 65kg student consumes 2500 Cal each day and stays at the s
    9·1 answer
  • If an object falling freely were somehow equipped with an odometer to measure the distance it travels, then the amount of distan
    13·1 answer
  • Two charged objects attract each other with a certain force. If the charge on one of the objects is doubled with no change in th
    7·1 answer
  • Describe how a convection cell is created in the mantle of the Earth.
    15·2 answers
  • Can I have some help please :)
    7·1 answer
  • Ang larong syato ay isang uri ng larong target games​
    9·1 answer
  • A 500kg car is driven forward with a thrust force of 1500N. Air resistance and friction acts against the motion of the car with
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!