Answer:
d. The length of the string is equal to one-half of a wavelength
Explanation:
A stretched string of length L, fixed at both ends, is vibrating in its third harmonic. How far from the end of the string can the blade of a screwdriver be placed against the string without disturbing the amplitude of the vibration
a. The length of the sting is equal to one-quarter of a wavelength.b. The length of the string is equal to the wavelength.c. The length of the string is equal to twice the wavelength.d. The length of the string is equal to one-half of a wavelength
e. The length of the string is equal to four times the wavelength
A stretched string of length L fixed at both ends is vibrating in its third harmonic H
How far from the end of the string can the blade of a screwdriver be placed against the string without disturbing the amplitude of the vibration
d. The length of the string is equal to one-half of a wavelength
There are two points during vibration , the node and the antinode
the node is the point where the amplitude is zero.
from the third harmonics, there are two nodes. The first node is half of the wavelength which is the closest to the fixed point.
for third harmonics=3/2lamda
P= mv
where p is momentum
m is mass
v is velocity
so it's given p= 100kgm/sec
v= 4m/s
so putting in the formula
100= m × 4
m = 25kg
Answer:
Introspection is a process that involves looking inward to examine one's own thoughts and emotions. ... The experimental use of introspection is similar to what you might do when you analyze your own thoughts and feelings but in a much more structured and rigorous way.
Explanation:
Example of it: The definition of introspection is self-examination, analyzing yourself, looking at your own personality and actions, and considering your own motivations. An example of introspection is when you meditate to try to understand your feelings. noun.
Answer:
3,13 N
Explanation:
Del enunciado de la segunda ley del movimiento de Newton;
F = ma
Dónde;
F = Fuerza aplicada
m = masa del cuerpo
a = aceleración del cuerpo
Sustitución de valores;
F = 5,9 kg * 0,53 m / seg2 = 3,13 N
Por tanto, la fuerza aplicada es 3,13 N
Answer:
51.96 years
2) 30 million of years
Explanation:
First we must know the travel time of the ship seen from the earth. The spaceship travels at half the speed of light, this means that the amount of time the spacecraft must spend to travel the same distance is double compared to the light, that is 60 years.
Now due to the speed of the ship, we must take into account relativistic effects, such as time dilation, this is given by:

Where t is the time measured in the ship, t' is the time measured in the earth, inertially moving with velocity v.
Rewriting for t:

This is the amount of time it would take you reach the Whirlpool galaxy in the spaceship.
2) a light year is a measure of distance, which indicates the kilometers that light travels in a year. Thus, the light emitted by Whirlpool galaxy takes 30 million of years reaches our planet.