Angle, θ2 at which the light leaves mirror 2 is 56°
<u>Explanation:</u>
Given-
θ1 = 64°
So, α will also be 64°
According to the figure:
α + β = 90°
So,
β = 90° - α
= 90° - 64°
= 26°
β + γ + 120° = 180°
γ = 180° - 120° - β
γ = 180° - 120° - 26°
γ = 34°
γ + δ = 90°
δ = 90° - γ
δ = 90° - 34°
δ = 56°
According to the law of reflection,
angle of incidence = angle of reflection
θ2 = δ = 56°
Therefore, angle θ2 at which the light leaves mirror 2 is 56°
Answer: 20 kgm/s
Explanation:
Given that M1 = M2 = 10kg
V1 = 5 m/s , V2 = 3 m/s
Since momentum is a vector quantity, the direction of the two object will be taken into consideration.
The magnitude of their combined
momentum before the crash will be:
M1V1 - M2V2
Substitute all the parameters into the formula
10 × 5 - 10 × 3
50 - 30
20 kgm/s
Therefore, the magnitude of their combined momentum before the crash will be 20 kgm/s
i think the answer is B-House Rules Comittee
When the applied force increases to 5 N, the magnitude of the block's acceleration is 1.7 m/s².
<h3>
Frictional force between the block and the horizontal surface</h3>
The frictional force between the block and the horizontal surface is determined by applying Newton's law;
∑F = ma
F - Ff = ma
Ff = F - ma
Ff = 4 - 2(1.2)
Ff = 4 - 2.4
Ff = 1.6 N
When the applied force increases to 5 N, the magnitude of the block's acceleration is calculated as follows;
F - Ff = ma
5 - 1.6 = 2a
3.4 = 2a
a = 3.4/2
a = 1.7 m/s²
Thus, when the applied force increases to 5 N, the magnitude of the block's acceleration is 1.7 m/s².
Learn more about frictional force here: brainly.com/question/4618599
Answer:
3 km/h
Explanation:
Let's call the rowing speed in still water x, in km/h.
Rowing speed in upstream is: x - 2 km/h
Rowing speed in downstream is: x + 2 km/h
It took a crew 9 h 36 min ( = 9 3/5 = 48/5) to row 8 km upstream and back again. Therefore:
8/(x - 2) + 8/(x + 2) = 48/5 (notice that: time = distance/speed)
Multiplying by x² - 2², which is equivalent to (x-2)*(x+2)
8*(x+2) + 8*(x-2) = (48/5)*(x² - 4)
Dividing by 8
(x+2) + (x-2) = (6/5)*(x² - 4)
2*x = (6/5)*x² - 24/5
0 = (6/5)*x² - 2*x - 24/5
Using quadratic formula






A negative result has no sense, therefore the rowing speed in still water was 3 km/h