Answer:
The correct answer is 169.56 g/mol.
Explanation:
Based on the given information, the mass of Ag deposited is 1.24 g, and the mass of unknown metal X deposited in another cell is 0.650 g. The number of moles of electrons can be determined as,
= 1.24 g Ag * 1mol Ag/107.87 g/mol Ag * 1 mol electron/1 mol Ag ( the molecular mass of Ag is 107.87 g/mol)
= 0.0115 mole of electron
The half cell reaction for the metal X is,
X^3+ (aq) + 3e- = X (s)
From the reaction, it came out that 3 faraday will reduce one mole of X^3+.
The molar mass of X will be,
= 0.650 g/0.0115 *3 mol electron/1 mol
= 56.52 * 3
= 169.56 g/mol
It is easiest to tell if a solution is saturated if there is residue on the bottom. If it crystallized, the solution is saturated. If it is a supersaturated solution, there will not be crystallization unless more of the solute is added, at which point all of it will crystallize.
Answer:
773.43 torr
Explanation:
From the question given above, the following data were obtained:
Pressure (in inHg) = 30.45 inHg
Pressure (in torr) =?
We can convert 30.45 inHg to torr by doing the following:
1 inHg = 25.4 torr
Therefore,
30.45 inHg = 30.45 inHg × 25.4 torr / 1 inHg
30.45 inhg = 773.43 torr
Thus, 30.45 inhg is equivalent to 773.43 torr
1077kjmol¹- + 498/2kjmol¹- + enthalpy=805*2kjmol¹- =1610-1319=291kjmol¹-