Answer is: pH of ammonium hydroxide is 11.13.
Chemical reaction of ammonium hydroxide in water: NH₄OH → NH₄⁺ +
OH⁻<span>.
</span>
Kb(NH₄OH) = 1,8·10⁻⁵<span>.
c</span>₀(NH₄OH<span>) = 0.1 M.
c(NH</span>₄⁺) = c(OH⁻<span>) = x.
c(</span>NH₄OH<span>) = 0.1 M- x.
Kb = c(NH</span>₄⁺) · c(OH⁻) / c(NH₄OH<span>).
0,000018 = x² / 0.1 mol/L - x</span>.
Solve quadratic equation: x = c(OH⁻) = 0.00133 M.
pOH = -logc(OH⁻).
pOH = 2.87.
pH = 14 - 2.87.
pH = 11.13.
1 gram of HNO3 will be equal to 1/63.01 moles. Therefore, we can say that 1 liter of Nitric acid contains 15.6976 moles or in other words molarity of 70% (w/w) Nitric acid is equal to 15.6976 M.
Known values
Molecular weight of HNO3 63.01 g/mole
Concentration of Nitric acid 70% (% by mass, wt/wt)
Answer:

Explanation:
Hello,
In this case, since the pH defines the concentration of hydrogen:
![pH=-log([H^+])](https://tex.z-dn.net/?f=pH%3D-log%28%5BH%5E%2B%5D%29)
![[H^+]=10^{-pH}=10^{-3.4}=3.98x10^{-4}](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-pH%7D%3D10%5E%7B-3.4%7D%3D3.98x10%5E%7B-4%7D)
And the percent ionization is:
![\% \ ionization=\frac{[H^+]}{[HA]}*100\%](https://tex.z-dn.net/?f=%5C%25%20%5C%20ionization%3D%5Cfrac%7B%5BH%5E%2B%5D%7D%7B%5BHA%5D%7D%2A100%5C%25)
We compute the concentration of the acid, HA:
![[HA]=\frac{[H^+]}{\% \ ionization}*100\%=\frac{3.98x10^{-4}}{66\%} *100\%\\\\](https://tex.z-dn.net/?f=%5BHA%5D%3D%5Cfrac%7B%5BH%5E%2B%5D%7D%7B%5C%25%20%5C%20ionization%7D%2A100%5C%25%3D%5Cfrac%7B3.98x10%5E%7B-4%7D%7D%7B66%5C%25%7D%20%20%2A100%5C%25%5C%5C%5C%5C)
![[HA]=6.03x10^{-4}](https://tex.z-dn.net/?f=%5BHA%5D%3D6.03x10%5E%7B-4%7D)
Thus, the Ka is:
![Ka=\frac{[H^+][A^-]}{[HA]}=\frac{3.98x10^{-4}*3.98x10^{-4}}{6.03x10^{-4}}\\ \\Ka=2.63x10^{-4}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D%3D%5Cfrac%7B3.98x10%5E%7B-4%7D%2A3.98x10%5E%7B-4%7D%7D%7B6.03x10%5E%7B-4%7D%7D%5C%5C%20%20%5C%5CKa%3D2.63x10%5E%7B-4%7D)
So the pKa is:

Regards.
Answer: The correct answer is "wind direction".
Explanation:
Coriolis effect: This is an apparent deflection of moving air or water caused by the rotation of the earth.
Currents are created by wind. Their directions are determined by Coriolis effect.
Currents are created by wind. The earth is in constant motion. It describes the rotation of the earth which steers winds and the surface current. The ocean surface currents are deflected by Coriolis effect.
The direction of the wind blows from north and south towards equator.
Therefore, the Coriolis effect influences wind direction.