Greenhouse Gases, on relation to Earth's atmosphere.
Static frictional force = ƒs = (Cs) • (Fɴ)
2.26 = (Cs) • m • g
2.26 = (Cs) • (1.85) • (9.8)
Cs = 0.125
kinetic frictional force = ƒκ = (Cκ) • (Fɴ)
1.49 = (Cκ) • m • g
1.49 = (Cκ) • (1.85) • (9.8)
Cκ = 0.0822
Answer:

Explanation:
The temperature in stratosphere is generally about 270 K
molecular weight of an ozone molecule = 48 gm/mole
now formula for most probable velocity

plugging the values we get


Answer:
Yes it will move and a= 4.19m/s^2
Explanation:
In order for the box to move it needs to overcome the maximum static friction force
Max Static Friction = μFn(normal force)
plug in givens
Max Static friction = 31.9226
Since 36.6>31.9226, the box will move
Mass= Wieght/g which is 45.8/9.8= 4.67kg
Fnet = Fapp-Fk
= 36.6-16.9918
=19.6082
=ma
Solve for a=4.19m/s^2
Answer:
y = 0.0233 m
Explanation:
In a Young's Double Slit Experiment the distance between two consecutive bright fringes is given by the formula:
Δx = λL/d
where,
Δx = distance between fringes
λ = wavelength of light
L = Distance between screen and slits
d = Slit Separation
Now, for initial case:
λ = 425 nm = 4.25 x 10⁻⁷ m
y = 2Δx = 0.0177 m => Δx = 8.85 x 10⁻³ m
Therefore,
8.85 x 10⁻³ m = (4.25 x 10⁻⁷ m)L/d
L/d = (8.85 x 10⁻³ m)/(4.25 x 10⁻⁷ m)
L/d = 2.08 x 10⁴
using this for λ = 560 nm = 5.6 x 10⁻⁷ m:
Δx = (5.6 x 10⁻⁷ m)(2.08 x 10⁴)
Δx = 0.0116 m
and,
y = 2Δx
y = (2)(0.0116 m)
<u>y = 0.0233 m</u>