Answer:
They developed a test for poisons in the human tissues
Explanation:
Around the 19th century, Mathieu Orfila and Robert Christison developed important tests that identified poisons in human tissues.
By so doing, they laid the foundation for what is now called forensic toxicology. This science attempts to identify poisons in human tissues especially by way of autopsies and forensic investigation.
Today forensic toxicology has expanded to include alcohol testing techniques as well as testing athletes for intake of performance enhancing substances.
Answer:
A. The speed of the wave increases four times.
Answer:
Mechanical energy = 3.92 J
exactly 3.92 j
Explanation:
As we know that mechanical energy is sum of kinetic energy and potential energy of the system
so here we can say that mechanical energy is sum of kinetic energy of ball and its potential energy
Since ball is at rest so kinetic energy of the ball must be ZERO
Now for potential energy we know that

now we know
m = 0.2 kg
h = 2 m
now for potential ene'rgy


so mechanical energy is given as
Mechanical Energy = 3.92 + 0 = 3.92 J
First of all we need to convert everything into SI units.
Let's start with the initial angular speed,

. Keeping in mind that


we have

And we should also convert the angle covered by the centrifuge:

This is the angle covered by the centrifuge before it stops, so its final angular speed is

.
To solve the problem we can use the equivalent of

of an uniformly accelerated motion but for a rotational motion. It will be

And by substituting the numbers, we can find the value of

, the angular acceleration:
Walking at a speed of 2.1 m/s, in the first 2 s John would have walked
(2.1 m/s) (2 s) = 4.2 m
Take this point in time to be the starting point. Then John's distance from the starting line at time <em>t</em> after the first 2 s is
<em>J(t)</em> = 4.2 m + (2.1 m/s) <em>t</em>
while Ryan's position is
<em>R(t)</em> = 100 m - (1.8 m/s) <em>t</em>
where Ryan's velocity is negative because he is moving in the opposite direction.
(b) Solve for the time when they meet. This happens when <em>J(t)</em> = <em>R(t)</em> :
4.2 m + (2.1 m/s) <em>t</em> = 100 m - (1.8 m/s) <em>t</em>
(2.1 m/s) <em>t</em> + (1.8 m/s) <em>t</em> = 100 m - 4.2 m
(3.9 m/s) <em>t</em> = 95.8 m
<em>t</em> = (95.8 m) / (3.9 m/s) ≈ 24.6 s
(a) Evaluate either <em>J(t)</em> or <em>R(t)</em> at the time from part (b).
<em>J</em> (24.6 s) = 4.2 m + (2.1 m/s) (24.6 s) ≈ 55.8 m