Answer:
Explanation:
If we let our reference frame travel at 30 m/s with the constant speed car, The accelerating car increases its velocity by 10 m/s in 3 seconds.
The average velocity of the accelerating car is (0 + 10) / 2 = 5 m/s
It will advance its position 5 m/s(3 s) = 15 m in the accelerating period.
It takes 5 + 3 = 8 m for the two cars to become side by side.
It would take another 5 + 3 = 8 m for the accelerating car to leave a gap of 3 m between.
The car requires 8 + 8 = 16 m to pass the other safely but the acceleration period only gets him to 15 m.
So despite your saying this is not a YES / NO question, the answer is NO the acceleration is too low or not long enough to meet the required clearances.
Input needed is 10000 J/s / 0.30 = 333333 = J/s
three hours requires 333333(3)(3600) = 360 MJ of energy
360 MJ / 34 MJ/liter = 10.6 liters.
None of the above. 1 mL= 1 cubic centimeter
mm is the smallest.
The answer would be option D "a ball sitting on a shelf." Potential energy is the amount of energy a object has while it's at rest.. (or not moving) Kinetic energy is how much energy a object is while it's moving. So in this case it's option D because a ball sitting on a shelf isn't moving therefore it has potential energy. It's not option A because thats a example of kinetic energy since how the roller coaster is moving. It's not option B because it's kinetic energy because the bike is moving. It's also not option C because it's kinetic energy because the bird is moving.
Hope this helps!
Answer:

& 
Explanation:
Given:
- interior temperature of box,

- height of the walls of box,

- thickness of each layer of bi-layered plywood,

- thermal conductivity of plywood,

- thickness of sandwiched Styrofoam,

- thermal conductivity of Styrofoam,

- exterior temperature,

<u>From the Fourier's law of conduction:</u>

....................................(1)
<u>Now calculating the equivalent thermal resistance for conductivity using electrical analogy:</u>




.....................(2)
Putting the value from (2) into (1):


is the heat per unit area of the wall.
The heat flux remains constant because the area is constant.
<u>For plywood-Styrofoam interface from inside:</u>



&<u>For Styrofoam-plywood interface from inside:</u>


