Answer:
32000 N
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 40 m/s
Distance (s) = 10 m
Final velocity (v) = 0 m/s
Mass (m) of car = 400 Kg
Force (F) =?
Next, we shall determine the acceleration of the the car. This can be obtained as follow:
Initial velocity (u) = 40 m/s
Distance (s) = 10 m
Final velocity (v) = 0 m/s
Acceleration (a) =?
v² = u² + 2as
0² = 40² + (2 × a × 10)
0 = 1600 + 20a
Collect like terms
0 – 1600 = 20a
–1600 = 20a
Divide both side by –1600
a = –1600 / 20
a = –80 m/s²
The negative sign indicate that the car is decelerating i.e coming to rest.
Finally, we shall determine the force needed to stop the car. This can be obtained as follow:
Mass (m) of car = 400 Kg
Acceleration (a) = –80 m/s²
Force (F) =?
F = ma
F = 400 × –80
F = – 32000 N
NOTE: The negative sign indicate that the force is in opposite direction to the motion of the car.
Potential energy is mass * gravity * height. (m*g*h).
350 = 17*9.8*h <--350 is its energy, 17kg is its mass, and 9.8 is gravity's acceleration on the object. We now just need to solve for h.
h = 350/(17 * 9.8) = 2.1 meters, which, when rounded to the nearest whole meter, is 2 meters.
The shelf is 2 meters high.
He studied galaxies, source: “Hubble proved that many objects previously thought to be clouds of dust and gas and classified as "nebulae" were actually galaxies beyond the Milky”