Newton observed the action of a prism on the white light and on red light. Because he did not control the event, this investigation of light was an observational study.
Hope this helps! (:
Answer:
2123.55 $/hr
Explanation:
Given parameters are:
KV
L = 143 km
I = 500 A

So, we will find the voltage potential provided for the city as:
kV
kV
Then, we will find dissipated power because of the resistive loss on the transmission line as:
W
Since the charge of plant is not given for electric energy, let's assume it randomly as 
Then, we will find the price of energy transmitted to the city as:
$/hr
To calculate money per hour saved by increasing the electric potential of the power plant:
Finally,
$/hr
The amount of money saved per hour =
$/hr
Note: For different value of the price of energy, it just can be substituted in the equations above, and proper result can be found accordingly.
Answer:
The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg
Explanation:
Hi there!
Due to conservation of energy, the potential energy (PE) of the mass at a height of 3.32 m will be transformed into elastic potential energy (EPE) when it falls on the mattress:
PE = EPE
m · g · h = 1/2 k · x²
Where:
m = mass.
g = acceleration due to gravity.
h = height.
k = spring constant.
x = compression distance
The maximum compression distance is 0.1289 m, then, the maximum elastic potential energy will be the following:
EPE =1/2 k · x²
EPE = 1/2 · 65144 N/m · (0.1289 m)² = 541.2 J
Then, using the equation of gravitational potential energy:
PE = m · g · h = 541.2 J
m = 541.2 J/ g · h
m = 541.2 kg · m²/s² / (9.8 m/s² · 3.32 m)
m = 16.6 kg
The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg.
Answer:
8 (maybe 18)
Explanation:
Depends on whether you have the d orbitals. If not, it's 8, and it's 18 including the d orbitals