Answer:
is the compression in the spring
Explanation:
Given:
- mass of the bullet,

- mass of block,

- stiffness constant of the spring,

- initial velocity of the spring just before it hits the block,

<u>Now since the bullet-mass gets embed into the block, we apply the conservation of momentum as:</u>



Now this kinetic energy of the combined mass gets converted into potential energy of the spring.



is the compression in the spring
There is no diagram below so I can't answer the question
The rate constant of a reaction can be computed by the ratio of the changes in the concentration and time take taken for it to decompose. Thus, if the rate constant is given to be 14 M/s, we have

where C are the concentration values and t is the time taken for it to decompose.


Thus, it will take 0.003 s for it to decompose.
Answer: 0.003 s
The subscript after the element indicates the number of atoms of that element in the molecule. So, in H20, the subscript after the H, which stands for hydrogen, is 2. This means that there are 2 hydrogen atoms in a water molecule.
Hope this helps! :)