1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
balu736 [363]
3 years ago
9

A mass m1 hangs from a spring k and is in static equilibrium. A second mass m2 drops through a height h and sticks to m1 without

rebound. Determine the subsequent motion u(t) measured from the static equilibrium position of m1 and k.
Physics
1 answer:
jekas [21]3 years ago
8 0

Answer:

\mathbf{u(t) =\dfrac{m_2g }{k}(1 - cos \omega_n t) + \dfrac{\sqrt{2gh}}{\omega_n}\times \dfrac{m_1}{m_1+m_2}sin \omega _n t}

Explanation:

From the information given:

The equation of the motion can be represented as:

(m_1 +m_2) \hat u + ku = m_2 g--- (1)

where:

m_1 = mass of the body 1

m_2 = mass of the body 2

\hat u = acceleration

k = spring constant

u = displacement

g = acceleration due to gravity

Recall that the formula for natural frequency \omega _n = \sqrt{\dfrac{k}{m_1+m_2}}

And the equation for the general solution can be represented  as:

u(t) = A cos \omega_nt + B sin \omega _n + \dfrac{m_2g}{k} --- (2)

To determine the initial velocity, we have:

\hat u_2^2 = 2gh

\hat u_2 = \sqrt{2gh}

where h = height

Suppose we differentiate equation (2) with respect to time t; we have the following illustration:

\hat u (t) = - \omega_n A sin \omega_n t+ \omega_n B cos \omega _n t + 0

now if t = 0

Then

\hat u (0) = - \omega_n A sin \omega_n (0)+ \omega_n B cos \omega _n (0) + 0

= \omega _n B

Using the  law of conservation of momentum on the impact;

m_2 \hat  u_2=(m_1+m_2) \hat u (0)

By replacing the value of \hat u_2 with \sqrt{2gh

Then the above equation becomes:

m_2 \times \sqrt{2gh}=(m_1+m_2) \ u(0)

Making u(0) the subject of the formula, we have:

u(0)= \dfrac{ m_2 \times \sqrt{2gh}}{(m_1+m_2)}

Similarly, the value of the variable can be determined as follows;

Using boundary conditions

0 = A cos 0 + B sin 0 + \dfrac{m_2g}{k}

0 = A (1)+0+ \dfrac{m_2g}{k}

A =- \dfrac{m_2g}{k}

Also, if  \hat u (0) = \omega_nB

Then :

\dfrac{m_2}{m_1+m_2}\sqrt{2gh} = \omega_n B

making B the subject; we have:

B = \dfrac{m_2}{m_1 + m_2}\dfrac{\sqrt{2gh}}{\omega_n}

Finally, replacing the value of A and B back to the general solution at equation (2); we have the equation of the subsequent motion u(t) which is:

\mathbf{u(t) =\dfrac{m_2g }{k}(1 - cos \omega_n t) + \dfrac{\sqrt{2gh}}{\omega_n}\times \dfrac{m_1}{m_1+m_2}sin \omega _n t}

You might be interested in
A 45.0-kg girl is standing on a 168-kg plank. The plank, originally at rest, is free to slide on a frozen lake, which is a flat,
muminat

Answer:

The speed of the plank relative to the ice is:

v_{p}=-0.33\: m/s

Explanation:

Here we can use momentum conservation. Do not forget it is relative to the ice.

m_{g}v_{g}+m_{p}v_{p}=0 (1)

Where:

  • m(g) is the mass of the girl
  • m(p) is the mass of the plank
  • v(g) is the speed of the girl
  • v(p) is the speed of the plank

Now, as we have relative velocities, we have:

v_{g/b}=v_{g}-v_{p}=1.55 \: m/s (2)

v(g/b) is the speed of the girl relative to the plank

Solving the system of equations (1) and (2)

45v_{g}+168v_{p}=0

v_{g}-v_{p}=1.55

v_{p}=-0.33\: m/s

I hope it helps you!      

8 0
3 years ago
The left side of the lever was forced down 10 inches in order to raise the rock 7 inches. The ideal mechanical advantage is
Yanka [14]

Answer:

1.42

Explanation:

<em> got it right on my homework </em>

6 0
3 years ago
What must be the length of a simple pendulum if its oscillation frequency is to be equal to that of an air-track glider of mass
Anvisha [2.4K]

Answer:

the length of the simple pendulum is 0.25 m.

Explanation:

Given;

mass of the air-track glider, m = 0.25 kg

spring constant, k = 9.75 N/m

let the length of the simple pendulum = L

let the frequency of the air-track glider which is equal to frequency of simple pendulum = F

The oscillation frequency of air-track glider is calculated as;

F = \frac{1}{2\pi } \sqrt{\frac{k}{m} } \\\\F = \frac{1}{2\pi } \sqrt{\frac{9.75}{0.25} } \\\\F = 0.994 \ Hz

The frequency of the simple pendulum is given as;

F = \frac{1}{2\pi} \sqrt{\frac{g}{l} } \\\\2\pi(F) = \sqrt{\frac{g}{l} } \\\\2\pi (0.994) = \sqrt{\frac{9.8}{l} } \\\\6.2455 = \sqrt{\frac{9.8}{l} } \\\\(6.2455)2 = \frac{9.8}{l} \\\\39.006 = \frac{9.8}{l} \\\\l = \frac{9.8}{39.006} \\\\l = 0.25 \ m

Thus, the length of the simple pendulum is 0.25 m.

8 0
3 years ago
state and explain any effect on sensitivity of liquid in a glass thermometer (i) reducing the diameter of capillary tube​
Ad libitum [116K]

Answer:

please give me brainlist and follow

Explanation:

The measuring sensitivity of liquid-in-glass thermometers increases with the amount of liquid in the thermometer. The more liquid there is, the more liquid will expand and rise in the glass tube. For this reason, liquid thermometers have a reservoir to increase the amount of liquid in the thermometer.

4 0
3 years ago
The fundamental frequency of a standing wave on a 1.0-m-long string is 440 Hz. What would be the wave speed of a pulse moving al
Nana76 [90]

Answer: v = 880m/s

Explanation: The length of a string is related to the wavelength of sound passing through the string at the fundamental frequency is given as

L = λ/2 where L = length of string and λ = wavelength.

But L = 1m

1 = λ/2

λ = 2m.

But the frequency at fundamental is 440Hz and

V = fλ

Hence

v = 440 * 2

v = 880m/s

4 0
3 years ago
Other questions:
  • A horse performs 15000 joules of work pulling a wagon for 20 seconds what is the horses power
    7·1 answer
  • The equation that is used to solve second law problems is # F= ma.
    8·1 answer
  • All of the noble gases, Group 18, have eight valence electrons in its outer shell (excluding helium which only has two). Which o
    9·2 answers
  • Imagine a particular exoplanet covered in an ocean of liquid methane. At the surface of the ocean, the acceleration of gravity i
    8·1 answer
  • From what height must an oxygen molecule fall in a vacuum so that its kinetic energy at the bottom equals the average energy of
    11·1 answer
  • What is nuclear fission reaction?
    8·1 answer
  • An object in a fluid experiences a buoyant force from the fluid. If the object is completely immersed, on which does the magnitu
    15·1 answer
  • One relationship between organisms is that of predator-prey. Which of the following is the best description of a predator?
    12·2 answers
  • Why was Earth very hot at the beginning of its formation? Select all that apply.
    9·1 answer
  • Someone help me please
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!