True because it doesn’t count as a full number
The balanced equation for the decomposition of hydrogen peroxide is H₂O₂(aq)→2H₂O(l)+O₂(g).
<h3>What is decomposition reaction?</h3>
Decomposition reactions are those reactions in which a compound will decompose into small molecules.
Hydrogen peroxide will decompose into water molecule and oxygen gas, balanced chemical equation will be represented as:
H₂O₂(aq) → 2H₂O(l) + O₂(g)
Where all atoms are present in equal quantities on both side of the equation.
Hence balanced decomposition reaction of H₂O₂ is H₂O₂(aq)→2H₂O(l)+O₂(g).
To know more about decomposition reaction, visit the below link:
brainly.com/question/27300160
#SPJ4
Answer:
ⁿₐX => ²¹⁸₈₄Po
Explanation:
Let ⁿₐX be the isotope.
Thus, the equation can be written as follow:
²²²₈₆Rn —> ⁴₂α + ⁿₐX
Next, we shall determine the value of 'n' and 'a'. This can be obtained as follow:
222 = 4 + n
Collect like terms
222 – 4 = n
218 = n
Thus,
n = 218
86 = 2 + a
Collect like terms
86 – 2 = a
84 = a
Thus,
a = 84
ⁿₐX => ²¹⁸₈₄Po
²²²₈₆Rn —> ⁴₂α + ⁿₐX
²²²₈₆Rn —> ⁴₂α + ²¹⁸₈₄Po
Answer:
35.8 g
Explanation:
Step 1: Given data
Mass of water: 63.5 g
Step 2: Calculate how many grams of KCl can be dissolved in 63.5. g of water at 80 °C
Solubility is the maximum amount of solute that can be dissolved in 100 g of solute at a specified temperature. The solubility of KCl at 80 °C is 56.3 g%g, that is, we can dissolve up to 56.3 g of KCl in 100 g of water.
63.5 g Water × 56.3 g KCl/100 g Water = 35.8 g KCl
Answer:
35.4528731 amu
Explanation:
To appropriately get the atomic mass unit of chlorine, we can get the answer using the masses from the isotopes. This can be obtained as follows. What we do is that we multiply the percentage compositions by the masses.
Now let’s do this.
[75.77/100 * 34.969] + [24.23/100 * 36.966]
= 26.4960113 + 8.9568618 = 35.4528731