The engine's efficiency is (35J)/125J) = 28% .
Do you have a different question to ask ?
The figure mentioned on the question is in the attachment.
Answer: a)
= - 38.35N
b)
= 30.5 N
c)
= 27.45 N
d) a = - 13.16 m/s²
Explanation: A block on an inclined plane has 3 forces acting on it:
- Force due to gravity
= m.g; - Normal Force due to the plane;
- Force of Friction
= µ.N;
Since the plane is inclined, Normal Force is equal the y-component of the force due to gravity and Force of friction and the x-component of the force due to gravity are opposite forces.
The second attachment ilustrate the forces acting on the block.
Calculating:
A) The magnitude of the x-component of Force due to gravity:
According to the second image:
= P.sinθ
= 5.9.8.sin(36.8)
= - 38.35 N
B)
=
= m.g.cosθ
= 5.9.8.cos(36.8)
= 30.5 N
C)
= 0.9.30.5
= 27.45 N
D) For the acceleration, use Newton's Law:
= m . a
If there is movement, it is only on x-axis, so the net force is:
-
= m.a
- 38.35 - 27.45 = 5a
a = - 13.16 m/s²
The value of acceleration shows there is <u>no</u> <u>movement</u> on the x-axis due to the friction.
Answer: 
Explanation:
Given
Power 
Distance from the light source 
Intensity is given by

Inserting values

Answer:
10.8 s
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Acceleration (a) = 5 m/s/s
Distance travelled (s) = 291 m
Time (t) taken =?
We can calculate the time taken for the car to cover the distance as follow:
s = ut + ½at²
291 = 0 × t + ½ × 5 × t²
291 = 0 + 2.5 × t²
291 = 2.5 × t²
Divide both side by 2.5
t² = 291 / 2.5
t² = 116.4
Take the square root of both side
t = √116.4
t = 10.8 s
Thus, it will take the car 10.8 s to cover the distance.
<h2>Answer: Mercury</h2><h2 />
The Mariner 10 probe was launched by NASA on November 3rd, 1973, with the purpose of exploring the characteristics of two planets in the solar system that were closest to the Sun, Mercury and Venus.
In addition, it was launched to explore the atmosphere and surface of both planets and <u>prove that it was possible to use gravitational assistance</u> (also called <u>slingshot effect</u>, a special orbital maneuver in order to use the gravitational field energy of a planet or massive body to accelerate or slow the probe and change the direction of its trajectory) in long interplanetary trips to save fuel.
In this case, <u>Mariner 10 first arrived at Venus</u> and succeded in using its gravitational field to accelerate its trajectory towards Mercury.