<h3>Answer: Choice D</h3>
=======================================================
Explanation:
The long way to do this is to multiply all the fractions out by hand, or use a calculator to make shorter work of this.
The shortest way is to simply count how many negative signs each expression has.
The rule is: if there are an even number of negative signs, then the product will be positive. Otherwise, the product is negative.
For choice A, we have 3 negative signs. The result (whatever number it is) is negative. Choice B is a similar story. Choice C is also negative because we have 1 negative sign. Choices A through C have an odd number of negative signs.
Only choice D has an even number of negative signs. The two negatives multiply to cancel to a positive. The negative is like undoing the positive. So two negatives just undo each other. This is why the multiplied version of choice D will be some positive number.
Or you can think of it as opposites. If you are looking up (positive direction) and say "do the opposite" then you must look down (negative direction). Then if you say "do the opposite", then you must look back up in the positive direction.
Given:Price of one taco = x; price of 2 tacos = 2xPrice of salad = $2.50Sales tax = 8% of the combined price of two tacos and a salad, namely .08(2x + 2.50)Tip = constant fee = $3.00Total bill = $13.80 Therefore the equation becomes
2x + 2.50 + .08(2x + 2.50) + 3 = 13.80 Solutions: 2x + 2.50 + .16x + .20 + 3 = 13.80 (using the distributive property to multiply 2x and 2.5 by .08).2.16x + 2.70 + 3 = 13.80 (combining like terms)2.16x + 5.70 = 13.80 (combining like terms)2.16x + 5.70 = 13.80 - 5.70 (subtraction property of equality)2.16x = 8.10x = 8.10/2.16 = 3.75 (division property of equality)
The cost of a single taco is $3.75
I need points so I can ask my question hope you get your answer
It depends, because sometimes they are difficult and sometimes not ...
Have a good Saturday...
Answer:
∠x = 90°
∠y = 58°
∠z = 32°
Step-by-step explanation:
The dimensions of the angles given are;
∠B = 32°
Whereby ΔABC is a right-angled triangle, and the square fits at angle A, we have;
∠A = 90°
∴ ∠B + ∠C = 90° which gives
32° + ∠C = 90°
∠C = 58°
∠x + Interior angle of the square = 180° (Sum of angles on a straight line)
∴ ∠x + 90° = 180°
Hence;
∠x = 90°
∠x + ∠y + 32° = 180° (Sum of angles in a triangle)
∴ 90° + ∠y + 32° = 180°
∠y = 180 - 90° - 32° = 58°
∠y + ∠z + Interior angle of the square = 180° (Sum of angles on a straight line)
58° + ∠z +90° = 180°
∴ ∠z = 32°
∠x = 90°
∠y = 58°
∠z = 32°