It would be C, because Ionic bonds have to deal with valence electrons ( the outer shell ones)
Answer:
LiCl = 0.492 m
Explanation:
Molal concentration is the one that indicates the moles of solute that are contained in 1kg of solvent.
Our solute is lithium chloride, LiCl.
Our solvent is distilled water.
We do not have the mass of water, but we know the volume, so we should apply density to determine mass.
Density = mass / volume
Density . volume = mass
1 g/mL . 19.7 mL = 19.7 g
We convert g to kg → 19.7 g . 1 kg / 1000g = 0.0197 kg
Let's determine the moles of LiCl
0.411 g . 1 mol / 42.394 g = 9.69×10⁻³ moles
Molal concentration (m) = 9.69×10⁻³ mol / 0.0197 kg → 0.492 m
Answer:
Al(NO3)3(s)--------> Al^3+(aq) + 3NO3^-(aq)
Explanation:
The equation shown above describes the dissolution of Al(NO3)3 in water using the lowest coefficients.
This occurs when solid Al(NO3)3 is added to water. It dissolves to give rise to ions as shown. This is a property of all ionic substances.