Answer: 1.99 mol h20
Explanation:
you have 36.030 g, trying to get it into mols
to get from g to mols, use the molar mass (periodic table)
36.030 g h20 (1 mol/18.02g) = 1.99 mol h20
1.75 moles or 1.8 moles if you’re rounding in terms of sig figs
For this problem, we use the Beer Lambert's Law. Its usual equation is:
A = ∈LC
where
A is the absorbance
∈ is the molar absorptivity
L is the path length
C is the concentration of the sample solution
As you notice, we only have to find the absorbance. But since we are not given with the molar absorptivity, we will have to use the modified equation that relates % transmittance to absorbance:
A = 2 - log(%T)
A = 2 - log(27.3)
A = 0.5638
I think your answer will be B. 273 k
Answer:
The molecular formula of an ascenapthalene is 
Explanation:


where,
=Elevation in boiling point = 
Mass of acenapthalene = 0.515 g
Mass of
= 15.0 g = 0.015 kg (1 kg = 1000 g)
= boiling point constant = 3.63 °C/m
m = molality
Now put all the given values in this formula, we get


Let the molecule formula of the Acenapthalene be ![C_{6n]H_{5n}](https://tex.z-dn.net/?f=C_%7B6n%5DH_%7B5n%7D)

n = 2.0
The molecular formula of an ascenapthalene is 