Sowers has spent her career fighting for gender equality and it passionate about it .
Answer:
An electric bell is placed inside a transparent glass jar. The bell can be turned on and off using a switch on the outside of the jar. A vacuum is created inside the jar by sucking out the air. Then the bell is rung using the switch. What will we see and hear?
A.
We’ll see the bell move, but we won’t hear it ring.
B.
We won’t see the bell move, but we’ll hear it ring.
C.
We’ll see the bell move and hear it ring.
D.
We won’t see the bell move or hear it ring.
E.
We’ll see the sound waves exit the vacuum pump.
Explanation:
so, the answer to the question is
A.
We'll see the bell move, but we won’t hear it ring.
The kinetic energy as measured in the Earth reference frame is 6.704*10^22 Joules.
To find the answer, we have to know about the Lorentz transformation.
<h3>What is its kinetic energy as measured in the Earth reference frame?</h3>
It is given that, an alien spaceship traveling at 0.600 c toward the Earth, in the same direction the landing craft travels with a speed of 0.800 c relative to the mother ship. We have to find the kinetic energy as measured in the Earth reference frame, if the landing craft has a mass of 4.00 × 10⁵ kg.

- Let us consider the earth as S frame and space craft as S' frame, then the expression for KE will be,

- So, to
find the KE, we have to find the value of speed of the approaching landing craft with respect to the earth frame. - We have an expression from Lorents transformation for relativistic law of addition of velocities as,

- Substituting values, we get,


Thus, we can conclude that, the kinetic energy as measured in the Earth reference frame is 6.704*10^22 Joules.
Learn more about frame of reference here:
brainly.com/question/20897534
SPJ4
Answer:
The gplanet is 0.193 m/s^2
Explanation:
The speed of the pulse is:


where
m=mass of the wire=4 g= 4x10^-3 kg
M=mass of the object= 3 kg
Replacing values:

Answer:
Explanation:
Venus's atmosphere is very thick, dry and hot whereas Mars's atmosphere is very thin and cold.
Both Venus's and Mars's atmospheres are about 95 percent carbon dioxide.
The surface temperature of Venus is around 890 degrees F, the hottest average temperature in the Solar System. This is due to abundance of greenhouse gasses. The atmosphere of Venus is composed of 97% CO2, 2% N2 and less than 1% of O2, H2O and CH4 (methane). Since CO2 is a major greenhouse gas, the radiation from the Sun is trapped in the atmosphere of Venus producing an extremely high surface temperature.
Mars has an atmospheric composition of 95% CO2, 3% N2, 2% Ar and less than 1% O2.A high noble gas content implies that Mar's atmosphere was much thicker in the past (noble gases do not react with other elements and are heavy enough to stay within the gravitational field of Mars). The climate on Mars is very desert-like due to its thin atmosphere. There is too little mass in the atmosphere to hold in heat so the warmest daytime temperatures are around 50 degrees F, but the nighttime temperatures are -170 degrees F. Other weather features are massive dust storms and occasional CO2 fog in the canyons.