1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hoochie [10]
3 years ago
8

A certain car takes 30m to stop when it is traveling at 25m/s. If a pedestrian is 28m in front of this car when the driver start

s braking (starting at 25m/s), how long does the pedestrian have to get out of the way?
Physics
1 answer:
irina1246 [14]3 years ago
3 0

Answer:

It take 1.78033 second get away

Explanation:

We have given that a car takes 30 m to stop when its speed is 25 m/sec

As the car stops its final speed v = 0 m/sec

Initial speed u = 25 m/sec

Distance s = 30 m

From third law of motion v^2=u^2+2as

So 0^2=25^2+2\times a\times 30

a=-10.4166m/sec^2

Now in second case distance s = 28 m

So v^2=25^2+2\times -10.4166\times 28

v^2=41.666

v = 6.4549 m/sec

Now from first equation of motion v=u+at

So 6.4549=25-10.4166\times t

t = 1.78033 sec

You might be interested in
What is the difference between work done by the gravitational force on descending and ascending objects?
Kazeer [188]
<span>The difference between work done by the gravitational force on descending and ascending objects is that for descending objects a terminal velocity will be reached where the object will not fall any faster that it already is. For an ascending object, its velocity will come down the longer gravity has an effect on it until the object begins to descend and the velocity of an ascending object will continue to change the longer gravity has an effect on it.</span>
8 0
3 years ago
16)
VMariaS [17]

Answer:

a.proton, proton

hope this helped :) have a goodday

6 0
3 years ago
A 0.140-kg baseball is dropped from rest. It has a speed of 1.20 m/s just before it hits the ground, and it rebounds with an upw
irga5000 [103]

Answer:

22 N upward

Explanation:

From the question,

Applying newton's second law of motion

F = m(v-u)/t....................... Equation 1

Where F = Average force exerted by the ground on the ball, m = mass of the baseball, v = final velocity, u = initial velocity, t = time of contact

Note: Let upward be negative and downward be positive

Given: m = 0.14 kg, v = -1.00 m/s, u = 1.2 m/s, t = 0.014 s

Substitute into equation 1

F = 0.14(-1-1.2)/0.014

F = 0.14(-2.2)/0.014

F = 10(-2.2)

F = -22 N

Note the negative sign shows that the force act upward

6 0
3 years ago
The spring of a spring gun has force constant k = 400 N/m and negligible mass. The spring is compressed 6.00 cm and a ball with
nikdorinn [45]

Answer:

A) v = 6.93 m/s

B) v = 4.9 m/s

C) x_m = 0.015m

D) v_max = 5.2 m/s

Explanation:

We are given;

x = 6 cm = 0.06 m

k = 400 N

m = 0.03 kg

F = 6N

A) from work energy law, work dome by the spring on ball which now became a kinetic energy is;

Ws = K.E = ½kx²

Similarly, kinetic energy of ball is;

K.E = ½mv²

So, equating both equations, we have;

½kx² = ½mv²

Making v the subject gives;

v = √(kx²/m)

Plugging in the relevant values to give;

v = √((400 × 0.06²)/0.03)

v = √48

v = 6.93 m/s

B) If there is friction, the total work is;

Ws = ½kx² - - - (1)

Work of the ball is;

Wb = KE + Wf

So, Wb = ½mv² + fx - - - (2)

Combining both equations, we have;

½mv² + fx = ½kx²

Plugging in the relevant values, we have;

(½ × 0.03 × v²) + (6 × 0.06) = ½ × 400 × 0.06²

0.015v² + 0.36 = 0.72

0.015v² = 0.72 - 0.36

v² = 0.36/0.015

v = √24

v = 4.9 m/s

C) The speed is greatest where the acceleration stops i.e. where the net force on the ball is zero. (ie spring force matches 6.0N friction)

So, from F = Kx;

(x is measured into barrel from end where F = 0)

Thus; 6.0 = 400x

x_m = 6/400

x_m = 0.015m from the end after traveling 0.045m

D) Initial force on ball = (Kx - F) =

[(400 x 0.06) - 6.0] = 18N

Final force on ball = 0N

Mean Net force on ball = ½(18 + 0)

Mean met force, F_m = 9N

Net Work Done on ball = KE = 9N x 0.045m = 0.405 J

Thus;

½m(v_max)² = 0.405J

(v_max)² = 2 x 0.405/0.03

(v_max)² = 27

v(max) = √27

v_max = 5.2 m/s

6 0
3 years ago
Which formula is used to find fluctuation of the shape of body
Sladkaya [172]

Answer:

varn=n1+1ehvkT–1

Explanation:

This is Einstein's equation.

5 0
3 years ago
Other questions:
  • The coriolis effect causes winds to move in a ______ pattern.
    12·2 answers
  • HELP A.S.A.P<br> SCIENCE
    7·2 answers
  • What are two reasons why the terrestrial planets formed closer to the Sun after the supernova event that initiated the formation
    14·1 answer
  • F the radius of a sphere is increasing at the constant rate of 2 cm/min, find the rate of change of its surface area when the ra
    11·1 answer
  • A power station delivers 510 kw of power at 12,000 v to a factory through wires of total resistance of 2.5 ω. how much less powe
    5·1 answer
  • LC CIRCUIT: A 20.00-F capacitor is fully charged by a 100.00-V battery, then disconnected from the battery and connected in seri
    12·1 answer
  • How does an iron nail become a magnet when it is placed in a strong magnetic field
    15·2 answers
  • An object falls for 7 seconds. How far does it fall?
    12·1 answer
  • Which term refers to how often a person works out?
    6·1 answer
  • After the big bang occurred, the universe
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!