Answer:
The final volume is 
Explanation:
<u>Data:</u>
Initial temperature:
Final temperature: 
Initial pressure: 
Final pressure: 
Initial volume:
Final volume: 
Assuming hydrogen gas as a perfect gas it satisfies the perfect gas equation:
(1)
With P the pressure, V the volume, T the temperature, R the perfect gas constant and n the number of moles. If no gas escapes the number of moles of the gas remain constant so the right side of equation (1) is a constant, that allows to equate:

Subscript 2 referring to final state and 1 to initial state.
solving for V2:


Answer:
Explanation:
distance between two crests = 8 m
The distance between the two crests is called wavelength.
So, wavelength, λ = 8 m
frequency = 2 Hz
Let v be the velocity of wave.
v = f x λ
v = 2 x 8
v = 16 m/s
Answer: 
Explanation:
Given
At an elevation of
, spacecraft is dropping vertically at a speed of 
Final velocity of the spacecraft is 
using equation of motion i.e. 
Insert the values

Therefore, magnitude of acceleration is
.
An electron shell can hold 2(n^2) electrons (technically) where n is the shell number, i.e. shell 1 can hold 2, shell 2 can hold 8, 3 holds 18 and so on.
The atomic number of Nitrogen is 7, i.e. it has 7 electrons (to match its 7 protons, assuming it isn't an ion).
With the atomic number, you simply start from shell 1 and work out. So we put 2 electrons in shell 1, leaving us with 5 left. Shell 2 can hold 6 so we can fit all 5 in.
In other words, you should have 2 electron shells on the atom, shell 1 with 2 e- and shell 2 with 5 e-.
Answer:
a) t = 0.74s
b) D = 4.76m
c) Vf = 5.35m/s
Explanation:
The ball starts rolling when Vf = ωf*R.
We know that:
Vf = Vo - a*t
ωf = ωo + α*t
With a sum of forces on the ball:




With a sum of torque on the ball:



Replacing both accelerations:


t=0.74s
The distance will be:


Final velocity:

Vf=5.35m/s