Answer:
Explanation:
Given
acceleration is given by

where 

Also acceleration is given by








at 





when air drag is neglected maximum height reached is


Answer:
630.75 j
Explanation:
from the question we have the following
total mass (m) = 54.5 kg
initial speed (Vi) = 1.4 m/s
final speed (Vf) = 6.6 m/s
frictional force (FF) = 41 N
height of slope (h) = 2.1 m
length of slope (d) = 12.4 m
acceleration due to gravity (g) = 9.8 m/s^2
work done (wd) = ?
- we can calculate the work done by the boy in pushing the chair using the law of law of conservation of energy
wd + mgh = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d)
wd = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d) - (mgh)
where wd = work done
m = mass
h = height
g = acceleration due to gravity
FF = frictional force
d = distance
Vf and Vi = final and initial velocity
wd = (0.5 x 54.5 x 6.9^2) - (0.5 x 54.5 x 1.4^2) + (41 x 12.4) - (54.5 X 9.8 X 2.1)
wd = 630.75 j
A<span> barometer is used to measure air pressure. </span>
Answer:
Most of what we know about the interior of the Earth comes from the study of seismic waves from earthquakes. Seismic waves from large earthquakes pass throughout the Earth. These waves contain vital information about the internal structure of the Earth.
Answer:

Explanation:
Mass of the Sun, 
The radius of the Sun, 
We need to find the acceleration due to gravity on the surface of the Sun. It is given by the formula as follows :

So, the value of acceleration due to gravity on the Sun is
.