The change in temperature had the greatest effect at changing the volume of the balloon.
<h3>What are the gas laws?</h3>
The gas laws are used to describe the parameters that has to do with gases.
Given that;
P1 = 98.5 kPa
T1 = 18oC or 291 K
V1 = 74.0 dm3
P2 = 7.0 kPa
V2 = ?
T2 = 18oC or 291 K
P1V1/T1 = P2V2/T2
P1V1T2 =P2V2T1
V2= P1V1T2/P2T1
V2 = 98.5 kPa * 74.0 dm3 * 291 K/ 7.0 kPa * 291 K
V2 = 1041.3 dm3
When;
V1 = 1041.3 dm3
T1 = 291 K
V2 = ?
T2 = 80oC or 353 K
V1/T1 = V2/T2
V1T2 = V2T1
V2 = V1T2/T1
V2 = 1041.3 dm3 * 353 K/291 K
V2 = 1263 dm3
The change in temperature had the greatest effect at changing the volume of the balloon.
Given that
V1 = 100 cm^3
T1 = 273 K
P1 = 1.01 * 10^5 Pa
V2 = ?
P2 = 3.00 x 10^-4 Pa
T2 = -180oC or 255 K
V2= P1V1T2/P2T1
V2 = 1.01 * 10^5 Pa * 100 cm^3 * 255 K / 3.00 x 10^-4 Pa * 273 K
V2 = 3.14 * 10^10 cm^3
Learn more about gas laws:brainly.com/question/12669509
#SPJ1
1)water has a great capacity to hold a moderate heat energy
Answer: Fluorine
Explanation: It belongs in the same group as Bromine
The concentration of the hydroxide ion given that the concentration of the hydronium ion 1.0 times 10^-14 M. The reverse mathematical method used to determine the pOH can be used to get the hydroxide ion concentration from the pOH. How many hydroxide ions are there in a solution with a pOH of 5.70, for instance.
Calculate 10-5.70, or "inverse" log, on a calculator (- 5.70). It indicates that one hydroxide ion is produced by one part of the NaOH solution. Because of this, the molar concentration of hydroxide ions in the solution is the same as the molar concentration of the NaOH.
To learn more about hydroxide, click here.
brainly.com/question/4251554
#SPJ4
Answer: 40 grams
Explanation:
The quantity of Heat Energy (Q) required to heat a substance depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Since Q = 93.4J
M = ?
C = 0.129 J/g.C
Φ = 40.4°C - 22.3°C = 18.1°C
Then, Q = MCΦ
Make Mass, M the subject formula
M = Q/CΦ
M = (93.4J) / (0.129 J/g.C x 18.1°C)
M = 93.4J / 2.33J/g
M = 40 g
Thus, the mass of the lead is 40 grams