<h3>
Answer:</h3>
1.93 g
<h3>
Explanation:</h3>
<u>We are given;</u>
The chemical equation;
2C₂H₆(g) + 7O₂(g) → 4CO₂(g) + 6H₂O(l) ΔH = -3120 kJ
We are required to calculate the mass of ethane that would produce 100 kJ of heat.
- 2 moles of ethane burns to produce 3120 Kilo joules of heat
Number of moles that will produce 100 kJ will be;
= (2 × 100 kJ) ÷ 3120 kJ)
= 0.0641 moles
- But, molar mass of ethane is 30.07 g/mol
Therefore;
Mass of ethane = 0.0641 moles × 30.07 g/mol
= 1.927 g
= 1.93 g
Thus, the mass of ethane that would produce 100 kJ of heat is 1.93 g
I googled it, here it is lol
It would be probably most likely B
Answer:
20.25 W
Explanation:
Applying,
P = I²R.................... Equation 1
Where P = Power, I = current drawn by the test light, R = Resistance of the test light
From the question,
Given: I = 1.5 A, R = 9.00 Ω
Substitute these values into equation 1
P = (1.5²)(9)
P = 2.25×9
P = 20.25 W