Answer:
The kinetic particle theory explains the properties of the different states of matter. The particles in solids, liquids and gases have different amounts of energy. They are arranged differently and move in different ways.
Explanation:
Hope it helps you
Answer: 45.038
Explanation: 2.016 H (2*1.008) + 15.999 O (1*15.999)
Answer:
The molar solubility of YF₃ is 4.23 × 10⁻⁶ M.
Explanation:
In order to calculate the molar solubility of YF₃ we will use an ICE chart. We identify 3 stages: Initial, Change and Equilibrium and we complete each row with the concentration of change of concentration. Let's consider the solubilization of YF₃.
YF₃(s) ⇄ Y³⁺(aq) + 3 F⁻(aq)
I 0 0
C +S +3S
E S 3S
The solubility product (Ksp) is:
Ksp = [Y³⁺].[F⁻]³= S . (3S)³ = 27 S⁴
![S=\sqrt[4]{Ksp/27} =\sqrt[4]{8.62 \times 10^{-21} /27}=4.23 \times 10^{-6}M](https://tex.z-dn.net/?f=S%3D%5Csqrt%5B4%5D%7BKsp%2F27%7D%20%3D%5Csqrt%5B4%5D%7B8.62%20%5Ctimes%2010%5E%7B-21%7D%20%20%2F27%7D%3D4.23%20%5Ctimes%2010%5E%7B-6%7DM)
Answer:
ΔHrxn = [(1) -1675.5 ( kJ/mole) + (2) 0 ( kJ/mole)] - [(1) -824.3 ( kJ/mole) + (2) 0 ( kJ/mole)]
Explanation:
ΔHrxn = 2ΔHf (Al₂O₃) - ΔHf (Fe₂O₃)
Remember that for pure elements in their standard state of temperature and pressure by definition their standard heats of formation are zero.
ΔHrxn = 2(-1675.7) - (-824.3) kJ/mol
ΔHrxn = 2527 kJ/mol