The maximum radiation pressure exerted by sunlight in space on a flat black surface is 4.5 ×
P a. So, the correct option is (b).
Radiation pressure is the name for the force electromagnetic wave particles exert on a surface. It is inversely related to the wave's speed. Given data
Solar constant ( S ) = 1350W / m ^2
Now, the radiaton pressure is given by
P = 2 S /c
where c is the speed of the light
P = 2 × 1350 /3 × 10 ^8
P = 9 ×
P a
For a black surface, P = 4.5×
P a
Therefore, maximum radiation pressure exerted by sunlight in space on a flat black surface is 4.5 ×
P a
Learn more about radiation pressure here;
brainly.com/question/23972862
#SPJ4
Answer:
0.595 M
Explanation:
The number of moles of water in 1L = 1000g/18g/mol = 55.6 moles of water.
Mole fraction = number of moles of KNO3/number of moles of KNO3 + number of moles of water
0.0194 = x/x + 55.6
0.0194(x + 55.6) = x
0.0194x + 1.08 = x
x - 0.0194x = 1.08
0.9806x= 1.08
x= 1.08/0.9806
x= 1.1 moles of KNO3
Mole fraction of water= 55.6/1.1 + 55.6 = 0.981
If
xA= mole fraction of solvent
xB= mole fraction of solute
nA= number of moles of solvent
nB = number of moles of solute
MA= molar mass of solvent
MB = molar mass of solute
d= density of solution
Molarity = xBd × 1000/xAMA ×xBMB
Molarity= 0.0194 × 1.0627 × 1000/0.981 × 18 × 0.0194×101
Molarity= 20.6/34.6
Molarity of KNO3= 0.595 M
Answer:
5.64×10²³ atoms C
Explanation:
Convert moles of H to moles of C:
2.81 mol H × (2 mol C / 6 mol H) = 0.937 mol C
Convert moles of C to atoms of C:
0.937 mol C × (6.02×10²³ atoms C / mol C) = 5.64×10²³ atoms C
<span>Carbon dioxide CO2 and water H2O. Through photosynthesis makes sugar C6H12O6.</span>
This may help you
<span>You need to use some stoichiometry here. The only way to do that is if you're working in moles. Since you're given grams of Al, you can convert that moles by dividing by the molar mass.
Then from looking at the coefficients in your equation, you can see that for however many moles of Al react, the same numbers of moles of Fe will be produced, but only half as many moles of Al2O3 will be produced.
To go back to grams, multiply the moles of each product that you get by their molar masses!</span>