Answer:
The answer is True
Explanation:
Statistical Multiplexing is considered an example of communication link sharing which makes it comparable to DBA (Dynamic Bandwidth Allocation). Here, communication channels are broken down into data streams to optimize the communication process.
In Statistical Time-division Multiplexing, time slots are allocated to data streams for communication optimization. This method makes sure that no time slot or bandwidth is wasted.
Hence, the sum of combined circuits must not be equal to the capacity of the circuit to work effectively.
From the geometry of the problem, the 20 m-long cable creates
the hypotenuse of a right triangle, with the extended of the other two sides of
size 20 m * cos(30 deg), which is around 17.3 m. Therefore, the ball has increased
by 20 m - 17.3 m = 2.7 m.
The potential energy will have altered by m*g*h, which is 1400 kg * 9.8 m/s^2 *
1.6 m , or about 37044 joules.
Answer: A (
,309.8°)
B (2
, 315°)
C (
, 26.56°)
Explanation: To transform rectangular coordinates into polar coordinates use:
and 
For point A:




°
Point A is in the II quadrant, so we substract the angle for 360° since it is in degrees:

309.8°
Polar coordinates for point A is (
, 309.8°)
For point B:





°
Point B is in IV quadrant, so:

315°
Polar coordinates for point B is (
, 315°)
For point C:





26.56°
Polar coordinates for point C is (
, 26.56°)
Answer:
The amount of mass that needs to be converted to release that amount of energy is 
Explanation:
From Albert Einstein's Energy equation, we can understand that mass can get converted to energy, using the formula

where
= change in mass
c = speed of light = 
Making m the subject of the formula, we can find the change in mass to be

There fore, the amount of mass that needs to be converted to release that amount of energy is 1.122 X 10 ^-7 kg