Answer:
15.7 m
Explanation:
m = mass of the sled = 125 kg
v₀ = initial speed of the sled = 8.1 m/s
v = final speed of sled = 0 m/s
F = force applied by the brakes in opposite direction of motion = 261
d = stopping distance for the sled
Using work-change in kinetic energy theorem
- F d = (0.5) m (v² - v₀²)
- (261) d = (0.5) (125) (0² - 8.1²)
d = 15.7 m
<span>Make the surfaces smoother. Rough surfaces produce more friction and smooth surfaces reduce friction
Lubrication is another way to make a surface smoother
Make the object more streamlined
Reduce the forces acting on the surfaces
<span>Reduce the contact between the surfaces.</span></span>
Answer:
0 J
Explanation:
given,
mass of the ball = 5 kg
radius of the horizontal circle = 0.5 m
tension in the string = 10 N
Work done = ?
Work done by the tension in the circular path will be equal to zero.
This is because body moves in circular path, the centripetal force act along the radius of the circle and motion is right angle to the tension on the string.
so, work done = F s cos θ
θ = 90°,
work done = F s cos 90° ∵ cos 90° = 0
Work done = 0 J
Answer:
If thermal energy is the motion energy of the particles of a substance, which has more thermal energy—the cup of hot tea or a spoonful of hot tea? It makes sense that the more particles of a substance you have, then the more thermal energy the substance has. The cup of hot tea would have more thermal energy, even if the temperature of the tea is the same in the cup and in the spoon. But which cools down the quickest (has the highest rate of thermal energy transfer)—the tea in the cup or the tea in the spoon? If I have fewer particles of the same substance, then the rate of thermal energy transfer is faster. The tea in the spoon would lose thermal energy more rapidly. So the amount of a substance you have is one factor that affects the rate of thermal energy transfer.
Explanation:
Answer:
we learned that an object that is vibrating is acted upon by a restoring force. The restoring force causes the vibrating object to slow down as it moves away from the equilibrium position and to speed up as it approaches the equilibrium position. It is this restoring force that is responsible for the vibration. So what forces act upon a pendulum bob? And what is the restoring force for a pendulum? There are two dominant forces acting upon a pendulum bob at all times during the course of its motion. There is the force of gravity that acts downward upon the bob. It results from the Earth's mass attracting the mass of the bob. And there is a tension force acting upward and towards the pivot point of the pendulum. The tension force results from the string pulling upon the bob of the pendulum. In our discussion, we will ignore the influence of air resistance - a third force that always opposes the motion of the bob as it swings to and fro. The air resistance force is relatively weak compared to the two dominant forces.
The gravity force is highly predictable; it is always in the same direction (down) and always of the same magnitude - mass*9.8 N/kg. The tension force is considerably less predictable. Both its direction and its magnitude change as the bob swings to and fro. The direction of the tension force is always towards the pivot point. So as the bob swings to the left of its equilibrium position, the tension force is at an angle - directed upwards and to the right. And as the bob swings to the right of its equilibrium position, the tension is directed upwards and to the left. The diagram below depicts the direction of these two forces at five different positions over the course of the pendulum's path.
that's what I know so far