Given Information:
Wavelength = λ = 39.1 cm = 0.391 m
speed of sound = v = 344 m/s
linear density = μ = 0.660 g/m = 0.00066 kg/m
tension = T = 160 N
Required Information:
Length of the vibrating string = L = ?
Answer:
Length of the vibrating string = 0.28 m
Explanation:
The frequency of beautiful note is
f = v/λ
f = 344/0.391
f = 879.79 Hz
As we know, the speed of the wave is
v = √T/μ
v = √160/0.00066
v = 492.36 m/s
The wavelength of the string is
λ = v/f
λ = 492.36/879.79
λ = 0.5596 m
and finally the length of the vibrating string is
λ = 2L
L = λ/2
L = 0.5596/2
L = 0.28 m
Therefore, the vibrating section of the violin string is 0.28 m long.
R 1,2 = 27.5 + 33.0 = 60.5 Ohms
1/ R 1,2,3 = 1/ 60.5 + 1 / 22 = 82.5 / 1331
R 1, 2, 3 = 1331 / 82.5 = 16.13 Ohms
I = U / R
I = 9 V / 16.13 Ohms = 0.557 A ≈ 0.56 A
Answer: C ) 0.56 Amps
Number three
They contain protons (positive), neutrons (negative), electrons (neutral) and all are in a nucleus which is part of an atom
Answer:
a set up where current flows without a voltage difference
Explanation:
because a circuit is a set up of different components, and throughout the circuit the voltage is the same, even with more components
Answer:
Ptolemy proposed a model, he reference system is centered on the Earth
Copernicus, proposed a deferent system, this system is centered on the Sun, where it is at the origin of the system
Explanation:
Thousands of years ago, Ptolemy proposed a model to explain the movement of the planets and stars in the sky, in this model the reference system is centered on the Earth, so each body is orbiting in different spheres around the Earth as its center, this system had very complicated calculations and curves to be able to explain the orbits of the planets.
More recently Copernicus, proposed a deferent system, this system is centered on the Sun, where it is at the origin of the system, in this system the movement of the planets are ellipses, which is a much simpler explanation and has been widely accepted, in current systems the reference system is fixed in the bodies more massive, since this simplifies the explanation of the movements.