1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
polet [3.4K]
2 years ago
9

The center of gravity is defined as: a. The part of the skeleton composed of the bones of the vertebral column, ribs, and skull

b. A plane the passes through the midpoint of the body c. State of an object as a result of forces pushing on it d. Imaginary point through which the resultant force of gravity acts on an object
Physics
1 answer:
mr Goodwill [35]2 years ago
8 0

Answer:

d. Imaginary point through which the resultant force of gravity acts on an object

Explanation:

Gravity acting on all particle points of the object, no matter how small they are. As a combination, the center of gravity would denote a single point which  substitutes for all the gravity forces on the object.

You might be interested in
Big Ben, a large artifact in England, has a mass of 1x10^8 kilograms and the Empire State Building 1x10^9 kilograms. The distanc
TiliK225 [7]

Answer:

The force, exerted by Big Ben on the Empire State Building is 2.66972 × 10⁻⁷ N

Explanation:

The question relates to the force of gravity experienced between two bodies

The given parameters are;

The mass of Big Ben, M₁ = 1 × 10⁸ kg

The mass of the Empire State Building, M₂ = 1 × 10⁹ kg

The distance between the two Big Ben and the Empire State Building, r = 5,000,000 meters

By Newton's Law of gravitation, we have;

F=G \times \dfrac{M_{1} \times M_{2}}{r^{2}}

Where;

F = The force exerted by Big Ben on the Empire State Building and vice versa

G = The universal gravitational constant = 6.67430 × 10⁻¹¹ N·m²/kg²

M₁, M₂, and r are the given parameters

By plugging in the values of the parameters and the constant into the equation for Newton's Law of gravitation, we have;

F=6.67430 \times 10^{-11} \times \dfrac{1 \times 10^8 \times 1 \times 10^9}{(5,000,000)^{2}} = 2.66972 \times 10^{-7}

The force, 'F', exerted by Big Ben on the Empire State Building is F = 2.66972 × 10⁻⁷ N.

3 0
3 years ago
In the design of a rapid transit system, it is necessary to balance the average speed of a train against the distance between st
bekas [8.4K]

Answer:

a) t = 746 s

b) t = 666 s

Explanation:

a)

  • Total time will be the sum of the partial times between stations plus the time stopped at the stations.
  • Due to the distance between stations is the same, and the time between stations must be the same (Because the train starts from rest in each station) we can find total time, finding the time for any of the distance between two stations, and then multiply it times the number of distances.
  • At any station, the train starts from rest, and then accelerates at 1.1m/s2 till it reaches to a speed of 95 km/h.
  • In order to simplify things, let's first to convert this speed from km/h to m/s, as follows:

       v_{1} = 95 km/h *\frac{1h}{3600s}*\frac{1000m}{1 km} = 26.4 m/s  (1)

  • Applying the definition of acceleration, we can find the time traveled by the train before reaching to this speed, as follows:

       t_{1} = \frac{v_{1} }{a_{1} } = \frac{26.4m/s}{1.1m/s2} = 24 s (2)

  • Next, we can find the distance traveled during this time, assuming that the acceleration is constant, using the following kinematic equation:

       x_{1} = \frac{1}{2} *a_{1} *t_{1} ^{2} = \frac{1}{2} * 1.1m/s2*(24s)^{2} = 316.8 m  (3)

  • In the same way, we can find the time needed to reach to a complete stop at the next station, applying the definition of acceleration, as follows:

       t_{3} = \frac{-v_{1} }{a_{2} } = \frac{-26.4m/s}{-2.2m/s2} = 12 s (4)

  • We can find the distance traveled while the train was decelerating as follows:

       x_{3} = (v_{1} * t_{3})   + \frac{1}{2} *a_{2} *t_{3} ^{2} \\ = (26.4m/s*12s) - \frac{1}{2} * 2.2m/s2*(12s)^{2} = 316.8 m - 158.4 m = 158.4m  (5)

  • Finally, we need to know the time traveled at constant speed.
  • So, we need to find first the distance traveled at the constant speed of 26.4m/s.
  • This distance is just the total distance between stations (3.0 km) minus the distance used for acceleration (x₁) and the distance for deceleration (x₃), as follows:
  • x₂ = L - (x₁+x₃) = 3000 m - (316.8 m + 158.4 m) = 2525 m (6)
  • The time traveled at constant speed (t₂), can be found from the definition of average velocity, as follows:

       t_{2} = \frac{x_{2} }{v_{1} } = \frac{2525m}{26.4m/s} = 95.6 s   (7)

  • Total time between two stations is simply the sum of the three times we have just found:
  • t = t₁ +t₂+t₃ = 24 s + 95.6 s + 12 s = 131.6 s (8)
  • Due to we have six stations (including those at the ends) the total time traveled while the train was moving, is just t times 5, as follows:
  • tm = t*5 = 131.6 * 5 = 658.2 s (9)
  • Since we know that the train was stopped at each intermediate station for 22s, and we have 4 intermediate stops, we need to add to total time 22s * 4 = 88 s, as follows:
  • Ttotal = tm + 88 s = 658.2 s + 88 s = 746 s (10)

b)

  • Using all the same premises that for a) we know that the only  difference, in order to find the time between stations, will be due to the time traveled at constant speed, because the distance traveled at a constant speed will be different.
  • Since t₁ and t₃ will be the same, x₁ and x₃, will be the same too.
  • We can find the distance traveled at constant speed, rewriting (6) as follows:
  • x₂ = L - (x₁+x₃) = 5000 m - (316.8 m + 158.4 m) = 4525 m (11)
  • The time traveled at constant speed (t₂), can be found from the definition of average velocity, as follows:

       t_{2} = \frac{x_{2} }{v_{1} } = \frac{4525m}{26.4m/s} = 171.4 s   (12)

  • Total time between two stations is simply the sum of the three times we have just found:
  • t = t₁ +t₂+t₃ = 24 s + 171.4 s + 12 s = 207.4 s (13)
  • Due to we have four stations (including those at the ends) the total time traveled while the train was moving, is just t times 3, as follows:
  • tm = t*3 = 207.4 * 3 = 622.2 s (14)
  • Since we know that the train was stopped at each intermediate station for 22s, and we have 2 intermediate stops, we need to add to total time 22s * 2 = 44 s, as follows:
  • Ttotal = tm + 44 s = 622.2 s + 44 s = 666 s (15)
7 0
2 years ago
Can something have energy without having momentum? explain. can something have momentum without having energy? defend your answe
marta [7]
Momentum  is a product mass and velocity. If a certain object posses a kinetic energy, then it should have a momentum since it is moving which has a velocity. However, if the object is at rest and only has potential energy, then it would not have momentum. So, for the first question the answer would be yes, an object can have energy without having any momentum. For the second question, every object whether it is moving or at rest, possess some energy, potential for an object at rest and kinetic for an object that is moving. Thus, the answer would be no, an object having momentum would always have energy.
8 0
3 years ago
Que es la friccion <br> Cual es la primera ley de newton
lidiya [134]

Answer:

huh?...................

5 0
3 years ago
Select the correct answer. Which of the following causes air pollution inside the house? A. Smoking cigarettes B. Growing housep
Troyanec [42]

Answer: Smoking cigarettes

Explanation: The other options don't cause pollution to form in the air besides smoking, from the particles it creates causing harm and damage to your lungs and fill the air with smoke particles.

3 0
2 years ago
Read 2 more answers
Other questions:
  • If you shout at a cliff wall that is 440 m away and the air temperature is at 25 °C, how long will it take before you hear your
    14·1 answer
  • Please help me with this homework
    10·2 answers
  • Compare the Vf calculated at the point of impact to the horizontal velocity you calculated using Δx and Δy. Were the vf and the
    8·1 answer
  • A curve has a radius of 50 meters and is banked 5 degrees. The road is covered with ice and is frictionless. What is the maximum
    12·1 answer
  • In a Rutherford scattering experiment a target nucleus has a diameter of 1.34×10-14 m. The incoming α particle has a mass of 6.6
    8·1 answer
  • Difference between xrays and radio wave
    7·1 answer
  • Runner A is initially 5.7 km west of a flagpole and is running with a constant velocity of 8.9 km/h due east. Runner B is initia
    15·1 answer
  • Who is the founder of operant conditioning?
    9·1 answer
  • Provide one example of this law during a physical change.
    15·1 answer
  • A given wave has a wavelength of 1.4 m and a frequency of 2.0 Hz. How fast
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!