Sarah's acceleration is 
Explanation:
The force of kinetic friction acting on Sarah has a magnitude which is given by:

where
is the coefficient of kinetic friction
m is Sarah's mass
g is the acceleration of gravity
Moreover, according to Newton's second law of motion, we know that the net force on Sarah is equal to its mass times its acceleration:

where a is the acceleration
Since the force of friction is the only force acting on Sarah, we can say that the net force is equal to the force of friction, therefore:

where the negative sign is due to the fact that the force of friction has a direction opposite to the motion of Sarah. Solving for a, we find

And substituting the following values:
(coefficient of friction)
(acceleration of gravity)
we find:

Learn more about acceleration and forces:
brainly.com/question/11411375
brainly.com/question/1971321
brainly.com/question/2286502
brainly.com/question/2562700
#LearnwithBrainly
Answer:
D
Explanation:
1.) The reaction is at dynamic equilibrium.
A: Nitrogen and hydrogen combine at the same rate that ammonia breaks down.
2.) Which statement about the reaction is necessarily correct?
A: Both calcium carbonate and sodium carbonate are being produced.
3.) Both calcium carbonate and sodium carbonate are being produced.
A: The reaction is reversible.
4.) What is the fastest motion that can be measured in any frame of reference?
A: 300,000 km/s
5.) Two people are on a train that is moving at 10 m/s north. They are walking 1 m/s south relative to the train. Relative to the ground, their motion is 9 m/s north.
Why are we able to use these motions to describe the motion relative to the ground?
A: The people are moving much slower than the speed of light so the ground acts as a frame of reference.
I think the correct answer from the choices listed above is option A. The process of conduction is described by the heat energy is transferred from the land to the air by direct contact. Conduction is the process of heat transfer that happens through the collisions between molecules.
Forces occur in pairs and can be either balanced or unbalanced. Balanced forces do not cause a change in motion. Unbalanced Forces do cause a change in motion.