Answer:
I would love to help but I don't know I'm so sorry
Supposing the runner is condensed to a point and moves upward at 2.2 m/s.
It takes a time = 2.2/g = 2.2/9.8 = 0.22 seconds to increase to max height.
Now looking at this condition in opposite - that is the runner is at max height and drops back to earth in 0.22 s (symmetry of this kind of motion).
From what height does any object take 0.22 s to fall to earth (supposing there is no air friction)?
d = 1/2gt²= (0.5)(9.8)(0.22)²= 0.24 m
<span>A sheet of copper could cause the object to lose the most amount of heat. Copper is an essential element and a good conductor of heat. Heat can transfer from one end of a piece of copper to the other end.</span>
Answer:
A)6.15 cm to the left of the lens
Explanation:
We can solve the problem by using the lens equation:

where
q is the distance of the image from the lens
f is the focal length
p is the distance of the object from the lens
In this problem, we have
(the focal length is negative for a diverging lens)
is the distance of the object from the lens
Solvign the equation for q, we find


And the sign (negative) means the image is on the left of the lens, because it is a virtual image, so the correct answer is
A)6.15 cm to the left of the lens
<span> One </span>volt<span> is </span>defined<span> as the difference in electric potential between two points of a conducting wire when an electric current of one ampere dissipates one watt of power between those points.</span>