Answer:

Explanation:
We are given that
Mass of one asteroid 1,
Mass of asteroid 2,
Initial distance between their centers,d=13.63 R
Radius of each asteroid=R
d'=R+R=2R
Initial velocity of both asteroids

We have to find the speed of second asteroid just before they collide.
According to law of conservation of momentum




According to law of conservation of energy







Hence, the speed of second asteroid =
Net force = (mass) · (acceleration)
= (69 kg) · (29 m/s²)
= (69 · 29) · (kg·m/s²)
= 2,001 Newtons upward
(about 450 pounds)
C. combustion I think. hope this helps
from the question
x₁ = x-coordinate = 8
y₁ = y-coordinate = - 4
m = slope of line = 2/3
slope form of the line is given as
(y - y₁ ) = m (x - x₁)
inserting the values
(y - (- 4) ) = (2/3) (x - 8)
(3) (y + 4) = (2) (x - 8)
multiplying each term inside the bracket by 3 and 2 respective on left and right side
3y + 12 = 2 x - 16
2 x - 3 y - 16 - 12 = 0
2 x - 3 y - 28 = 0
Give you something to compare your results with. It's always nice to be able to see what changes have been made to the original, even if it's not technically the original (I know that was worded weird, I just don't know how else to explain it.) Hope this helped!