Answer:
it is 27 degree.
Explanation:
because angle of reflection is equal to angle of Inc dence
Answer: d= 0.57* l
Explanation:
We need to check that before ladder slips the length of ladder the painter can climb.
So we need to satisfy the equilibrium conditions.
So for ∑Fx=0, ∑Fy=0 and ∑M=0
We have,
At the base of ladder, two components N₁ acting vertical and f₁ acting horizontal
At the top of ladder, N₂ acting horizontal
And Between somewhere we have the weight of painter acting downward equal to= mg
So, we have N₁=mg
and also mg*d*cosФ= N₂*l*sin∅
So,
d=
* tan∅
Also, we have f₁=N₂
As f₁= чN₁
So f₁= 0.357 * 69.1 * 9.8
f₁= 241.75
Putting in d equation, we have
d=
* tan 58
d= 0.57* l
So painter can be along the 57% of length before the ladder begins to slip
Answer
given,
length of slender rod =80 cm = 0.8 m
mass of rod = 0.39 Kg
mass of small sphere = 0.0200 kg
mass of another sphere weld = 0.0500 Kg
calculating the moment of inertia of the system



using conservation of energy




we know,
v = r ω


v = 1.084 m/s
Answer:
<em><u>number</u></em><em><u> </u></em><em><u>d</u></em>
Explanation:
<em><u>because</u></em><em><u> </u></em><em><u>plant</u></em><em><u> </u></em><em><u>need</u></em><em><u> </u></em><em><u>carbondioxide</u></em>