Answer:
Chlorophyll
Explanation:
Photosynthesis is the process through which plant cells use carbon dioxide & water to create oxygen & energy rich organic compounds. They do so by converting sunlight ie light energy into chemical energy. This is possible due to presence of chlorophyll in them. Animals can't do so, as they dont have chlorophyll.
The density of Ca will be between that of Mg and Sr
Explanation:
Ca, Mg and Sr are group II elements. They are called alkali earth metals. The correct order of the elements in this group are: Be, Mg, Ca, Sr, Ba and Ra.
Density is an intensive property of matter which describes the amount of matter(mass) per volume of a substance.
- Density varies proportionally with mass. The higher the mass, the higher its density.
- On the periodic table, atomic mass which the number of protons and neutrons in the nucleus of an atom increases down the group.
- This implies a progradation in the value of density down the group. Therefore one expects that the value of density of Ca will fall between that of Mg and Sr. It cannot be more than 2.6g/cm³ nor less than 1.74g/cm³.
Learn more:
density brainly.com/question/2658982
mass number brainly.com/question/2597088
#learnwithBrainly
The correct answer from the choices given is the last option. The can from the <span> car will lose the carbon more quickly because there are fewer solute–solvent collisions. The can in the car has a lower temperature than the one in the refrigerator. At low temperature, the solubility of carbon dioxide in the liquid decrease therefore particles would tend to be in the vapor phase and escape from the liquid.</span>
Answer:
Option A (0.043 g) is the correct answer.
Explanation:
Given:
= 43 mg
As we know,

then,
⇒ 
Thus, the above is the correct alternative.
Answer:
Different isotopes of the same element have the same number of protons in their atomic nuclei but differing numbers of neutrons. Radioisotopes are radioactive isotopes of an element. They can also be defined as atoms that contain an unstable combination of neutrons and protons, or excess energy in their nucleus.