According to the law of conservation of mass, the amount of BARIUM present of the reactants is the same as the amount present in the products (the precipitate).
(11.21 g BaSO4) / (233.4 g/mol BaSO4) = 0.0480 mol BaSO4 and original barium salt
(10.0 g) / (0.0480 mol) = 208.3 g/mol
So it must have been BaCl2, because the molar mass of Barium is 137 which leave 71 grams left. Since Barium is a +2 charge, it means the atom next to it must be twice. Chlorine mass is 35, which twice is 71
Answer:
Ha is more acidic than Hb because loss of Ha forms a resonance-stabilized conjugate base.
Explanation:
The carbon atom that is next to the carbonyl group in pentan-2-one is known as the alpha carbon atom, this carbon atom bears the Ha, the alpha hydrogen atoms.
Ha is more acidic than Hb because, loss of Ha leads to the formation of a resonance stabilized enolate ion. This resonance stabilization of the ion formed makes loss of Ha an easier process than loss of Hb, hence the answer above.
Answer:
option 2 is correct answer. its nitrogen.
Answer:
V2= 1.03L
Explanation:
Start off with what you are given.
V^1: 1.00L
T^1: 23°C
V^2?
T^2: 33°C
If you know your gas laws, you have to utilise a certain gas law called Charles' Law:
V^1/T^1 = V^2/T^2
Remember to convert Celsius values to Kelvin whenever you are dealing with gas problems. This can be done by adding 273 to whatever value in Celsius you have.
(23+273 = 296) (33+273 = 306)
Multiply crisscross
1.00/296= V^2/306
296V^2 = 306
Dividing both sides by 296 to isolate V2, we get
306/296 = 1.0337837837837837837837837837838
V2= 1.03L
A pure substance refers to an element or a compound that has no component of another compound or element. Pure substances are made of only one type of atom or molecule. Hydrogen gas and pure iron are examples of pure substances. Hydrogen consists of hydrogen atoms only while iron consists of only iron atoms. Mixing two pure substances results in a mixture. To separate the two, scientists use a method known as filtration. Mixtures can either be homogeneous or heterogeneous. The measure used to determine how pure a substance may be called purity. Besides hydrogen and iron, other pure substances include gold, diamonds, sugar, and baking soda.