Answer:
The number of copper atoms 12.405 ×10²³ atoms.
The number of silver atoms 13.13 ×10²³ atoms.
Beaker B have large number of atoms.
Explanation:
Given data:
In beaker A
Number of moles of copper = 2.06 mol
Number of atoms of copper = ?
In beaker B
Mass of silver = 222 g
Number of atoms of silver = ?
Solution:
For beaker A.
we will solve this problem by using Avogadro number.
The number 6.022×10²³ is called Avogadro number and it is the number of atoms in one mole of substance.
While we have to find the copper atoms in 2.06 moles.
So,
63.546 g = 1 mole = 6.022×10²³ atoms
For 2.06 moles.
2.06 × 6.022×10²³ atoms
The number of copper atoms 12.405 ×10²³ atoms.
For beaker B:
107.87 g = 1 mole = 6.022×10²³ atoms
For 222 g
222 g / 101.87 g/mol = 2.18 moles
2.18 mol × 6.022×10²³ atoms = 13.13 ×10²³ atoms
Matematically speaking, maybe because:
The number of substances = number of elements + number of different combinations of those elements
<span><span>Atomic number36,</span><span>Atomic mass<span>83.80 g.mol -1,</span></span><span>Density<span>3.73 10-3 g.cm-3 at 20°C,</span></span><span>Melting point- 157 °C,</span><span>Boiling point<span>- 153° C</span></span></span>
Answer:
15.75 grams of HNO3 was used and dissolved in 2.5 liters of solvent, to make a 0.10 M solution
Explanation:
Step 1: Data given
Nitric acid = HNO3
Molar mass of H = 1.01 g/mol
Molar mass of N = 14.0 g/mol
Molar mass O = 16.0 g/mol
Number of moles nitric acid (HNO3) = 0.25 moles
Molairty = 0.10 M
Step 2: Calculate molar mass of nitric acid
Molar mass HNO3 = Molar mass H + molar mass N + molar mass (3*O)
Molar mass HNO3 = 1.01 + 14.0 + 3*16.0
Molar mass HNO3 = 63.01 g/mol
Step 3: Calculate mass of solute use
Mass HNO3 = moles HNO3 * molar mass HNO3
Mass HNO3 = 0.25 moles * 63.01 g/mol
Mass HNO3 = 15.75 grams
15.75 grams of HNO3 was used and dissolved in 2.5 liters of solvent, to make a 0.10 M solution