The answer is Thickness of solution.
The Beer-Lambert Law equation has the following form:
A=E×b×c
Where A is absorbance, E <span>is the molar absorbtivity, </span>b is the path length of the sample and c <span>is the concentration of the compound in solution.
</span>
<span>Lamber-Ber's law shows that the absorbance of a solution is directly proportional to the concentration of the species to be absorbed, as well as the length of the path. For example, if the length of the path is constant, the UV / VIS spectroscopy can be used to determine the concentration of the absorbent substance in the solution.</span>
To determine the number of moles(n) of a substance, divide its amount given in grams by the molar mass. The element in the problem is gold (Au) which has a molar mass of 196.97 grams per mole. The division is better illustrated below
n = 35.12 g / 196.97 grams per mole
The answer to the operation above is 0.1783 moles. Therefore, there are approximately 0.1783 moles of Au in 35.12 grams.
Anything that is moving has kinetic energy, and the faster it is moving, the more kinetic energy it has. The total kinetic energy of moving particles of matter is called thermal energy. ... That's because the particles of all matter are in constant motion and have kinetic energy.
Answer:
Explanation:
The chemical combustion reactions use a compound called fuel (containing carbon and hydrogen atoms, example: CH4 methane) and oxygen, generating C02 (carbon dioxide) and H20 (water).