Answer: a) 
b) 1 mole of
is produced.
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
The skeletal equation is:

The balanced equation will be:

Thus the coefficients are 2, 3 , 10 , 4 , 3 , 2 and 5.
b) Oxidation: 
Reduction: 
Net reaction: 
When 1 mole of
is produced, 1 mole of
is produced.
Answer:
2 KCIO₃ → 2 KCI + 3 O₂
Explanation:
A chemical equation is balanced when the number of atoms of each element is equal on both sides of the equation.
You have already identified the initial number of atoms of each element on both sides of the equation. As a rule of thumb, we balance the number of oxygen and hydrogen atoms last.
However, since all the other elements are already balanced, we shall start by balancing the number of oxygen atoms.
The lowest common multiple of 2 and 3 is 6. Thus, we shall ensure that both sides of the equation has 6 oxygen atoms.
2 KCIO₃ → KCI + 3 O₂
<u>Reactants</u>
K --- 2
C--- 2
I --- 2
O --- 6
<u>Products</u>
K --- 1
C --- 1
I --- 1
O --- 6
Notice that number of K, C and I atoms on the left-hand side of the equation has also changed.
2 KCIO₃ → 2 KCI + 3 O₂
<u>Reactants</u>
K --- 2
C --- 2
I --- 2
O --- 6
<u>Products</u>
K --- 2
C --- 2
I --- 2
O --- 6
The equation is now balanced.
Answer:

2P4O10 + 2H2O → 2H3PO4
Balanced Equation → P4O10 + 6H2O → 4H3PO4
Tetraphosphorus Decaoxide + Water → Phosphoric Acid

Reaction Type → Synthesis