Had to look for the given illustration attached to this question and here is my answer. The site on the cross section provided wherein it is the most likely place for a spring would be SITE C. In the image, it is labeled sites A, B, C, and D. Hope this answers your question.
Translation
A tractor pulling a cart loaded with sugar cane travels down the straight path of a farm at a speed of 20 km / h. If at 3:00 p.m.you pass the Finca Las Margaritas, what time will you arrive at the Las Ilusiones farm, located on the same road, if the distance between the two farms is 60 km
Answer:
6.00 pm
Explanation:
Speed is given by dividing distance by time and expressed as s=d/t. Making time the subject of the formula then t=d/s where s is the speed, d is distance covered and t is the time taken. Substituting 20 km/h for s and 60 km for d then t=60/20=3 hours
Adding 3 hours to 3 pm we get 6pm
Therefore, the time to reach the destination if the speed is constantly maintained is 6.00 pm
The change in distance is 30 because if you subtract both number you'll get 30
Answer:
the equilibrium wage rate is 10 and the equilibrium quantity of labor is 1000 workers
Explanation:
The equilibrium wage rate and the equilibrium quantity of labor are found as the point where the equation of demand intercepts the equation of supply, so the equilibrium quantity of labor is:

15 - (1/200) L = 5 + (1/200) L
15 - 5 = (1/200) L + (1/200) L
10 = (2/200) L
(10*200)/2 = L
1000 = L
Then, the equilibrium wage rate is calculated using either the equation of demand for labor or the equation of supply of labor. If we use the equation of demand for labor, we get:
W = 15 - (1/200) L
W = 15 - (1/200) 1000
W = 10
Finally, the equilibrium wage rate is 10 and the equilibrium quantity of labor is 1000 workers
Answer:
and a dumb person would say "what's the question" or "I don't get it"