Note the signs of equilibrium:-
- Reaction don't procede forward or backward
- Concentration of products and reactants remains same .
So
if
Concentration of A is 2M then concentration of B should be same .
So equilibrium constant K is 1
![\\ \rm\rightarrowtail K=\dfrac{[Products]^a}{[Reactants]^b}](https://tex.z-dn.net/?f=%5C%5C%20%5Crm%5Crightarrowtail%20K%3D%5Cdfrac%7B%5BProducts%5D%5Ea%7D%7B%5BReactants%5D%5Eb%7D)
So
Answer:
renewable energy sources such as solar and wind DONT emit carbon dioxide and other greenhouse gases that contribute to global warming
Explanation:
Answer:
1.12g/mol
Explanation:
The freezing point depression of a solvent for the addition of a solute follows the equation:
ΔT = Kf*m*i
<em>Where ΔT is change in temperature (Benzonitrile freezing point: -12.82°C; Freezing point solution: 13.4°C)</em>
<em>ΔT = 13.4°C - (-12.82) = 26.22°C</em>
<em>m is molality of the solution</em>
<em>Kf is freezing point depression constant of benzonitrile (5.35°Ckgmol⁻¹)</em>
<em>And i is Van't Hoff factor (1 for all solutes in benzonitrile)</em>
Replacing:
26.22°C = 5.35°Ckgmol⁻¹*m*1
4.90mol/kg = molality of the compound X
As the mass of the solvent is 100g = 0.100kg:
4.9mol/kg * 0.100kg = 0.490moles
There are 0.490 moles of X in 551mg = 0.551g, the molar mass (Ratio of grams and moles) is:
0.551g / 0.490mol
= 1.12g/mol
<em>This result has no sense but is the result by using the freezing point of the solution = 13.4°C. Has more sense a value of -13.4°C.</em>
The answer is decomposition