Answer:
Answer: Given m = 10 kg and . F = 20 N. Thus, the force required to accelerate the object upward direction is 20 N.
Explanation:
Answer: Given m = 10 kg and . F = 20 N. Thus, the force required to accelerate the object upward direction is 20 N.
The 3003 aluminum alloy is made up of 1.25% Magnesium and 0.1% Copper. This combination is designed to increase the strength of the material over other types of alloys such as those of the 1000 series. This alloy provides a medium strength and can be educated by cold work.
The alloy is not heat treatable and generally has good formability, corrosion resistance and weldability.
However, being a material that hardens by cold work, welding a 3003 Aluminum structure will cause the body to undergo recrystallization which will generate a loss in the 'resistance' of the material and the force capable of withstanding. If this aluminum will be used for structural purposes, it should not be welded. It would be better to perform the structure with a 6061 aluminum, which has similar characteristics and is not so affected by welding.
Answer:
option a
Explanation:
Size of an atom (diameter) = 10⁻¹⁰ m
There are approximately 10²² atoms in a single drop of water. If they are put in a straight line, the length would be
l = diameter of an atom × number of atoms
l = 10²²× 10⁻¹⁰ m = 10¹² m
Distance between the Sun and the Earth is 1.47 × 10¹¹ m. The calculated length is greater than the distance between the Sun and the Earth.
Thus, option a is correct.
Answer:571.09 kJ
Explanation:
Given
Temperature of cooling water from engine exit
After Passing through the radiator its temperature decreases to 
specific heat of water
Volume of water 
density of water 
Thus mass of water
Heat transferred to the surrounding is equal to heat absorbed by cooling water




Answer:
3 cm
Explanation:
According to the question,
.
.
.
Now the approximate slit's image width is equal to width of central maxima.
And width of central maxima is twice the width from center to first maxima
So,
.
Substitute all the variable in above equation.
.
.