1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tatiana [17]
2 years ago
5

List and Explain three ways study groups benefit your learning

Physics
2 answers:
torisob [31]2 years ago
5 0

Answer:

Explanation:

  • Find a new perspective.

The other members of the study group will have different ideas and perspectives to their own, thus generating different ways of understanding a topic. When you study, you only have one vision, however, by doing it in company, your own knowledge is enriched and you can understand the concepts globally.

  • Motivation

It is another advantage of studying in a group. Being alone, he turns around before sitting down to study, looking for excuses and wasting time. On the other hand, when having a study appointment, you must meet a schedule, taking advantage of the moment to just study. They will also encourage each other to continue studying. In short, you cannot postpone studies as you would if you were studying alone.

  • Eliminate boredom.

Joining a study group generally makes the act of studying a little less monotonous. You should try to put together a group with those who understand the subject and are responsible, and the ideal is to enjoy the entire study process in company.

vodomira [7]2 years ago
4 0

Answer:

The answer

Explanation:

Thinking together, Better friendship, Makes teacher happy.

You might be interested in
When a rubber ball dropped from rest bounces off the floor, its direction of motion is reversed becaue
nalin [4]

Answer:In physics, energy is the quantitative property that must be transferred to an object in order to perform work on, or to heat, the object.[note 1] Energy is a conserved quantity; the law of conservation of energy states that energy can be converted in form, but not created or destroyed. The SI unit of energy is the joule, which is the energy transferred to an object by the work of moving it a distance of 1 metre against a force of 1 newton.

Common forms of energy include the kinetic energy of a moving object, the potential energy stored by an object's position in a force field (gravitational, electric or magnetic), the elastic energy stored by stretching solid objects, the chemical energy released when a fuel burns, the radiant energy carried by light, and the thermal energy due to an object's temperature.

Mass and energy are closely related. Due to mass–energy equivalence, any object that has mass when stationary (called rest mass) also has an equivalent amount of energy whose form is called rest energy, and any additional energy (of any form) acquired by the object above that rest energy will increase the object's total mass just as it increases its total energy. For example, after heating an object, its increase in energy could be measured as a small increase in mass, with a sensitive enough scale.

Living organisms require energy to stay alive, such as the energy humans get from food. Human civilization requires energy to function, which it gets from energy resources such as fossil fuels, nuclear fuel, or renewable energy. The processes of Earth's climate and ecosystem are driven by the radiant energy Earth receives from the sun and the geothermal energy contained within the earth.

Explanation:

Some forms of energy (that an object or system can have as a measurable property)

Type of energy Description

Mechanical the sum of macroscopic translational and rotational kinetic and potential energies

Electric potential energy due to or stored in electric fields

Magnetic potential energy due to or stored in magnetic fields

Gravitational potential energy due to or stored in gravitational fields

Chemical potential energy due to chemical bonds

Ionization potential energy that binds an electron to its atom or molecule

Nuclear potential energy that binds nucleons to form the atomic nucleus (and nuclear reactions)

Chromodynamic potential energy that binds quarks to form hadrons

Elastic potential energy due to the deformation of a material (or its container) exhibiting a restorative force

Mechanical wave kinetic and potential energy in an elastic material due to a propagated deformational wave

Sound wave kinetic and potential energy in a fluid due to a sound propagated wave (a particular form of mechanical wave)

Radiant potential energy stored in the fields of propagated by electromagnetic radiation, including light

Rest potential energy due to an object's rest mass

Thermal kinetic energy of the microscopic motion of particles, a form of disordered equivalent of mechanical energy

Main articles: History of energy and timeline of thermodynamics, statistical mechanics, and random processes

8 0
3 years ago
Which is a major threat to biodiversity? A. Red-billed oxpeckers eat ticks off of impalas' coats in the grasslands of East Afric
SIZIF [17.4K]
B. Mining in the Guinean Forests of West Africa to provide diamond and gold jewelry for humans.
4 0
3 years ago
A net force of 60 N north acts on an object with a mass of 30 kg. Use Newton's second law of
earnstyle [38]

Answer:

Explanation:

F = ma. For us, this looks like

60 = 30a and

a = 2 m/s/s

If the force goes up to, say, 90, then

90 = 30a and

a = 3...if the force goes up, the acceleration also goes up.

If the mass goes up to say, 60, and the force stays the same, then

60 = 60a and

a = 1...if the mass goes up, the acceleration goes down.

7 0
3 years ago
which statement best describes what would happen if the number of wore coils in a electromagnavneg were increased
jekas [21]
Where are the following choices
4 0
3 years ago
What is the conclusion of coin and feather experiment? ​
valina [46]

Answer:

So the conclusion is that in presence of air net force acting downward reduces for feather and hence falls slower than coin. But in absence of air resistance, net downward force is just equal to force due to gravity which is same for both coin and feather and hence they fall down at the same rate.

5 0
3 years ago
Other questions:
  • A person can generate about 300 W of power on a treadmill. If the treadmill is inclined at 3% and a 70-kg man runs at 3 m/s for
    12·1 answer
  • Representar las uniones interatomicas<br> a. kcl<br> b. ZnO<br> c. ZnBr2<br> d. BeI2
    7·1 answer
  • I need help finding moment
    14·1 answer
  • Describe the medium that electromagnetic waves use to travel
    14·1 answer
  • Witch of the following is an example of a pull
    15·1 answer
  • A 5kg wheel rolls off a flat roof of a 50 m tall building at 12m/s.
    8·1 answer
  • ASAP pls answer right and I will mark brainiest
    12·1 answer
  • If we pour very hot liquid like tea or coffee
    9·1 answer
  • An elevator of 3 × 10^4N is raised to a height of 100m in 20s . The work done by electric motor is equivalent to ?​
    15·1 answer
  • BL21)
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!