(12 - 2) * 180 = 1,800/12 = 150
(8 - 2) * 180 = 1,080/8 = 135
B. 8 sides
Answer:
the missing longest side is 7 and the shorter missing side is 3 and the perimeter is 26cm brainliest plz
Answer:
![\lim_{x \to 1}\frac{x^2-1}{sin(x-2)}=0](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%201%7D%5Cfrac%7Bx%5E2-1%7D%7Bsin%28x-2%29%7D%3D0)
Explanation:
Assuming the correct expression is to find the following limit:
![\lim_{x \to 1}\frac{x^2-1}{sin(x-2)}](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%201%7D%5Cfrac%7Bx%5E2-1%7D%7Bsin%28x-2%29%7D)
Use the property the limit of the quotient is the quotient of the limits:
![\lim_{x \to 1}\frac{x^2-1}{sin(x-2)}=\frac{\lim_{x \to 1}x^2-1}{\lim_{x \to 1}sin(x-2)}](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%201%7D%5Cfrac%7Bx%5E2-1%7D%7Bsin%28x-2%29%7D%3D%5Cfrac%7B%5Clim_%7Bx%20%5Cto%201%7Dx%5E2-1%7D%7B%5Clim_%7Bx%20%5Cto%201%7Dsin%28x-2%29%7D)
Evaluate the numerator:
![\frac{\lim_{x \to 1}x^2-1}{\lim_{x \to 1}sin(x-2)}=\frac{1^2-1}{\lim_{x \to1}sin(x-2)}=\frac{0}{\lim_{x \to 1}sin(x-2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Clim_%7Bx%20%5Cto%201%7Dx%5E2-1%7D%7B%5Clim_%7Bx%20%5Cto%201%7Dsin%28x-2%29%7D%3D%5Cfrac%7B1%5E2-1%7D%7B%5Clim_%7Bx%20%5Cto1%7Dsin%28x-2%29%7D%3D%5Cfrac%7B0%7D%7B%5Clim_%7Bx%20%5Cto%201%7Dsin%28x-2%7D)
Evaluate the denominator:
- Since
![\lim_{x \to1}sin(x-2)\neq 0](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto1%7Dsin%28x-2%29%5Cneq%200)
![\frac{0}{\lim_{x \to1}sin(x-2)}=0](https://tex.z-dn.net/?f=%5Cfrac%7B0%7D%7B%5Clim_%7Bx%20%5Cto1%7Dsin%28x-2%29%7D%3D0)
Answer:
Step-by-step explanation:
H = V/ pie r^2
H = ![\frac{2200pie}{Pie 5^2}](https://tex.z-dn.net/?f=%5Cfrac%7B2200pie%7D%7BPie%205%5E2%7D)
R= 5 because the radius is half the diameter
Pies cancel out leaving you with:
H = 2200/5^2
H = 2200/25
H = 88
Hope this helps :)