Answer:
a) 
b) 
c) 
Step-by-step explanation:
<u>For the question a *</u> you need to find a polynomial of degree 3 with zeros in -3, 1 and 4.
This means that the polynomial P(x) must be zero when x = -3, x = 1 and x = 4.
Then write the polynomial in factored form.

Note that this polynomial has degree 3 and is zero at x = -3, x = 1 and x = 4.
<u>For question b, do the same procedure</u>.
Degree: 3
Zeros: -5/2, 4/5, 6.
The factors are

---------------------------------------

--------------------------------------

--------------------------------------

<u>Finally for the question c we have</u>
Degree: 5
Zeros: -3, 1, 4, -1
Multiplicity 2 in -1

--------------------------------------

--------------------------------------

----------------------------------------

-----------------------------------------

Answer:
<u>-5 ± √5² - 4 · 1 · 4</u>
2 · 1
Step-by-step explanation:
ax²+bx+c=0 (quadratic equation)
x=<u> -b ± √b² - 4ac</u>
2a
a= 1
b= 5
c= 4
-<u>5 ± √5² - 4 · 1 · 4</u>
2 · 1
Answer:
Step-by-step explanation: do you have any choices